[1] |
Gong J, Huo M, Zhou J, et al. Synthesis, characterization, drug-loading capacity and safety of novel octyl modified serum albumin micelles[J].Int J Pharm, 2009,376(1-2): 161-168. |
[2] |
Hasan K, Seyed AS, Amir M, et al. Optimization of PEGylation conditions for BSA nanoparticles using response surface methodology[J].AAPS Pharm Sci Tech, 2010, 11(3): 1206-1211. |
[3] |
Zhang SF, Cezary K, Michael RD, et al. Polyethylenimine-PEG coated albumin nanoparticles for BMP-2 delivery[J].Biomaterials, 2010, 31(5): 952-963. |
[4] |
Marion GA, Mahler HC, Klaus L. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients[J].Int J Pharm, 2008, 363(1-2): 162-169. |
[5] |
Bitten P, Conan JF, Peter W, et al. Effects of PEG size on structure, function and stability of PEGylated BSA[J].Eur J Pharm Biopharm, 2011, 79(2): 399-405. |
[6] |
Zhao T, Cheng YN, Tan HN, et al. Site-specific chemical modification of human serum albumin with polyethylene glycol prolongs half-life and improves intravascular retention in mice[J].Biolog Pharm Bull, 2012, 35(3): 280-288. |
[7] |
Zhao T, Yang Y, Zong AZ, et al. N-terminal PEGylation of human serum albumin and investigation of its pharmacokinetics and pulmonary microvascular retention[J].Biol Sci Trends, 2012, 6(2): 81-88. |
[8] |
Wu L, Martin CG, Stanley SD, et al. Preparation and characterisation of rose bengal-loaded surface-modified albumin nanoparticles[J].J Contr Rel, 2011, 71(1): 117-126. |
[9] |
Franco D, Silvia A, Paola B, et al. Poly(ethylene glycol)-human serum albumin-paclitaxel conjugates: preparation, characterization and pharmacokinetics[J].J Contr Rel, 2001, 76(1-2): 107-117. |
[10] |
Pedro C, Amy GT, Ananda K. Volume resuscitation from hemorrhagic shock with albumin and hexaPEGylated human serum albumin[J].Resuscitation, 2008, 79(1): 139-146. |
[11] |
Moghimi SM. Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers[J].Biochim Biophys Acta, 2002, 1590(1-3): 131-139. |
[12] |
周 莉, 罗贵民, 高蛛娟, 等. 聚乙二醇修饰牛血请白蛋白[J].吉林大学自然科学学报,1997, (4): 63-66. |
[13] |
Jesse VJ, Tatsiana L, Richard NZ, et al. Nanoparticle PEGylation for imaging and therapy[J].Nanomedicine, 2001, 6(4): 715-728. |
[14] |
Wu L, Martin CG, Etienne S, et al. Preparation and in vitro characterization of HSA-mPEG nanoparticles[J].Int J Pharm, 1999, 189(2): 161-170. |
[15] |
孙诚谊, 刘建刚, 钱志勇, 等. 聚乙二醇修饰与未修饰磁性5-氟尿嘧啶白蛋白微球体外性质的比较[J].消化肿瘤杂志, 2008, 1(2): 110-113. |
[16] |
Beatriz F, Bibiana N, Hernan DN, et al. Thermal features of the bovine serum albumin unfolding by polyethylene glycols[J].Int J Biol Macromol, 1999, 26(1): 23-33. |
[17] |
Gianfranco P, Francesco MV. State of the art in PEGylation: the great versatility achieved after forty years of research[J].J Contr Rel, 2012, 161(2): 461-472. |
[18] |
徐 超. 聚乙二醇修饰人血清白蛋白及其纳米微球制备[D]. 合肥工业大学, 2007. |
[19] |
Liu W, Zhang ZQ, Liu CM, et al. Effect of molecular patch modification on the stability of dynamic high-pressure microfluidization treated trypsin[J].Innov Food Sci Emerg Tech, 2012, 16: 349-354. |
[20] |
Hou BB, Li SR, Li XH, et al. Design, preparation and in vitro bioactivity of mono-PEGylated recombinant hirudin[J].Chin J Chem Eng, 2007, 15(6): 775-780. |
[21] |
Veronese FM. Introduction and overview of peptide and protein PEGylation: a review of problems and solution[J].Biomaterials,2001, 22(5): 405-417. |
[22] |
Hu JL, Walter S. N-terminal specificity of PEGylation of human bone morphogenetic protein-2 at acidic pH[J].Int J Pharm, 2011, 413(1-2): 140-146. |
[23] |
Stewart AJ, Blindauer CA, Berezenko S, et al. Role of Tyr84 in controlling the reactivity of Cys34 of human albumin[J].FEBS J, 2005, 272(2): 353-362. |
[24] |
Octaaf JMB, Jan FAL, Marcel JEF, et al. The molecular mechanism of the neutral-to-base transition of human serum albumin[J].J Biol Chem, 1989, 264(2): 953-959. |
[25] |
Kim SH, Jeong JH, Joe CO, et al. Folate receptor mediated intracellular protein delivery using PLL-PEG-FOL conjugate[J].J Contr Rel, 2005,103: 625-634. |
[26] |
袁 飞, 王树斌, 彭志平, 等. 表皮生长因子受体靶向纳米载体荷载c-erbB2反义寡脱氧核苷酸对人乳腺癌SK-BR3细胞的摄取和滞留[J].中国组织工程研究与临床康复, 2009,13(16): 3084-3088. |
[27] |
Choi N, Kim SM, Hong KS, et al. The use of the fusion protein RGD-HSA-TIMP2 as a tumor targeting imaging[J].Biomaterials, 2011, 32: 7151-7158. |
[28] |
Parikh T, Bommana MM, Squillante E. Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain[J].Eur J Pharm Biopharm, 2010, 74: 442-450. |
[29] |
Zensi A, Begley D, Pontikis C, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurons[J].J Contr Rel, 2009, 137: 78-86. |
[30] |
Kreuter J, Hekmatara T, Dreis S, et al. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain[J].J Contr Rel, 2007, 118: 54-58. |
[31] |
Ulbrich K, Hekmatara T, Herbert E, et al. Transferrin and transferrin-receptor-antibody modified nanoparticles enable drug delivery across the blood-brain barrier(BBB)[J]. Eur J Pharm Biopharm, 2009, 71: 251-256. |