[1] |
FERLAY J, SOERJOMATARAM I, DIKSHIT R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer,2015,136(5):E359-E386. doi: 10.1002/ijc.29210 |
[2] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer J Clin,2018,68(6):394-424. doi: 10.3322/caac.21492 |
[3] |
FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer,2019,144(8):1941-1953. doi: 10.1002/ijc.31937 |
[4] |
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2016[J]. CA: A Cancer J Clin,2016,66(1):7-30. doi: 10.3322/caac.21332 |
[5] |
ALY H A. Cancer therapy and vaccination[J]. J Immunol Methods,2012,382(1-2):1-23. doi: 10.1016/j.jim.2012.05.014 |
[6] |
LONGLEY D B, ALLEN W L, JOHNSTON P G. Drug resistance, predictive markers and pharmacogenomics in colorectal cancer[J]. Biochim Biophys Acta,2006,1766(2):184-196. |
[7] |
TEICHER B A. Newer cytotoxic agents: attacking cancer broadly[J]. Clin Cancer Res,2008,14(6):1610-1617. doi: 10.1158/1078-0432.CCR-07-2249 |
[8] |
刁磊, 刘明一, 鲍岚. 微管蛋白亚型及其功能[J]. 中国细胞生物学学报, 2019, 41(3):322-332. |
[9] |
NOGALES E. Structural insights into microtubule function[J]. Annu Rev Biochem,2000,69:277-302. doi: 10.1146/annurev.biochem.69.1.277 |
[10] |
WITTMANN T, HYMAN A, DESAI A. The spindle: a dynamic assembly of microtubules and motors[J]. Nat Cell Biol,2001,3(1):E28-E34. doi: 10.1038/35050669 |
[11] |
NEWTON C N, WAGENBACH M, OVECHKINA Y, et al. MCAK, a Kin I kinesin, increases the catastrophe frequency of steady-state HeLa cell microtubules in an ATP-dependent manner in vitro[J]. FEBS Lett,2004,572(1-3):80-84. doi: 10.1016/j.febslet.2004.06.093 |
[12] |
SOBIERAJSKA K, GŁOS J, DĄBOROWSKA J, et al. Visualization of the interaction between Gβγ and tubulin during light-induced cell elongation of Blepharisma japonicum[J]. Photochem Photobiol Sci,2010,9(8):1101. doi: 10.1039/c0pp00031k |
[13] |
PORTRAN D, ZOCCOLER M, GAILLARD J, et al. MAP65/Ase1 promote microtubule flexibility[J]. Mol Biol Cell,2013,24(12):1964-1973. doi: 10.1091/mbc.e13-03-0141 |
[14] |
KAVALLARIS M, ANNEREAU J P, BARRET J M. Potential mechanisms of resistance to microtubule inhibitors[J]. Semin Oncol,2008,35(3 suppl 3):S22-S27. |
[15] |
KAVALLARIS M. Microtubules and resistance to tubulin-binding agents[J]. Nat Rev Cancer,2010,10(3):194-204. doi: 10.1038/nrc2803 |
[16] |
SINGH P, ANAND A, KUMAR V. Recent developments in biological activities of chalcones: a mini review[J]. Eur J Med Chem,2014,85:758-777. doi: 10.1016/j.ejmech.2014.08.033 |
[17] |
BATOVSKA D I, TODOROVA I T. Trends in utilization of the pharmacological potential of chalcones[J]. Curr Clin Pharmacol,2010,5(1):1-29. doi: 10.2174/157488410790410579 |
[18] |
SAHU N K, BALBHADRA S S, CHOUDHARY J, et al. Exploring pharmacological significance of chalcone scaffold: a review[J]. Curr Med Chem,2012,19(2):209-225. doi: 10.2174/092986712803414132 |
[19] |
ZHUANG C L, ZHANG W, SHENG C Q, et al. Chalcone: a privileged structure in medicinal chemistry[J]. Chem Rev,2017,117(12):7762-7810. doi: 10.1021/acs.chemrev.7b00020 |
[20] |
ZHOU B, YU X, ZHUANG C, et al. Unambiguous identification of β-tubulin as the direct cellular target responsible for the cytotoxicity of chalcone by photoaffinity labeling[J]. ChemMedChem,2016,11(13):1436-1445. doi: 10.1002/cmdc.201600150 |
[21] |
HU T, LI Z, GAO C Y, et al. Mechanisms of drug resistance in colon cancer and its therapeutic strategies[J]. World J Gastroenterol,2016,22(30):6876-6889. doi: 10.3748/wjg.v22.i30.6876 |
[22] |
GAN P P, MCCARROLL J A, PO'UHA S T, et al. Microtubule dynamics, mitotic arrest, and apoptosis: drug-induced differential effects of betaIII-tubulin[J]. Mol Cancer Ther,2010,9(5):1339-1348. doi: 10.1158/1535-7163.MCT-09-0679 |
[23] |
CONG H, ZHAO X, CASTLE B T, et al. An indole-chalcone inhibits multidrug-resistant cancer cell growth by targeting microtubules[J]. Mol Pharm,2018,15(9):3892-3900. doi: 10.1021/acs.molpharmaceut.8b00359 |
[24] |
LI J, WU Y, GUO Z, et al. Discovery of 1-arylpyrrolidone derivatives as potent p53-MDM2 inhibitors based on molecule fusing strategy[J]. Bioorg Med Chem Lett,2014,24(12):2648-2650. doi: 10.1016/j.bmcl.2014.04.063 |
[25] |
NEGI A S, GAUTAM Y, ALAM S, et al. Natural antitubulin agents: Importance of 3,4,5-trimethoxyphenyl fragment[J]. Bioorg Med Chem,2015,23(3):373-389. doi: 10.1016/j.bmc.2014.12.027 |