[1] |
LU J Q, LI R, MU B S, et al. Multiple targeted doxorubicin-lonidamine liposomes modified with p-hydroxybenzoic acid and triphenylphosphonium to synergistically treat glioma[J]. Eur J Med Chem, 2022, 230:114093. doi: 10.1016/j.ejmech.2021.114093 |
[2] |
SCHIRONE L, D’AMBROSIO L, FORTE M, et al. Mitochondria and doxorubicin-induced cardiomyopathy: a complex interplay[J]. Cells, 2022, 11(13):2000. doi: 10.3390/cells11132000 |
[3] |
KITAKATA H, ENDO J, IKURA H, et al. Therapeutic targets for DOX-induced cardiomyopathy: role of apoptosis vs. ferroptosis[J]. Int J Mol Sci, 2022, 23(3):1414. doi: 10.3390/ijms23031414 |
[4] |
WANG J, TANG W, YANG M, et al. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy[J]. Biomaterials, 2021, 273:120784. doi: 10.1016/j.biomaterials.2021.120784 |
[5] |
TIAN W, XIE X J, CAO P L. Magnoflorine improves sensitivity to doxorubicin (DOX) of breast cancer cells via inducing apoptosis and autophagy through AKT/mTOR and p38 signaling pathways[J]. Biomed Pharmacother, 2020, 121:109139. doi: 10.1016/j.biopha.2019.109139 |
[6] |
HUANG Y X, SUN G H, SUN X D, et al. The potential of lonidamine in combination with chemotherapy and physical therapy in cancer treatment[J]. Cancers, 2020, 12(11):3332. doi: 10.3390/cancers12113332 |
[7] |
SHUTKOV I A, OKULOVA Y N, TYURIN V Y, et al. Ru(Ⅲ) complexes with lonidamine-modified ligands[J]. Int J Mol Sci, 2021, 22(24):13468. doi: 10.3390/ijms222413468 |
[8] |
CHENG G, ZHANG Q, PAN J, et al. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis[J]. Nat Commun, 2019, 10(1):2205. doi: 10.1038/s41467-019-10042-1 |
[9] |
NATH K, GUO L L, NANCOLAS B, et al. Mechanism of antineoplastic activity of lonidamine[J]. Biochim Biophys Acta BBA Rev Cancer, 2016, 1866(2):151-162. doi: 10.1016/j.bbcan.2016.08.001 |
[10] |
COHEN-EREZ I, ISSACSON C, LAVI Y, et al. Antitumor effect of lonidamine-polypeptide-peptide nanoparticles in breast cancer models[J]. ACS Appl Mater Interfaces, 2019, 11(36):32670-32678. doi: 10.1021/acsami.9b09886 |
[11] |
PENG Y, LU J Q, LI R, et al. Glucose and triphenylphosphonium co-modified redox-sensitive liposomes to synergistically treat glioma with doxorubicin and lonidamine[J]. ACS Appl Mater Interfaces, 2021, 13(23):26682-26693. doi: 10.1021/acsami.1c02404 |
[12] |
ZHAO Y, PENG Y, YANG Z Z, et al. pH-redox responsive cascade-targeted liposomes to intelligently deliver doxorubicin prodrugs and lonidamine for glioma[J]. Eur J Med Chem, 2022, 235:114281. doi: 10.1016/j.ejmech.2022.114281 |
[13] |
LI H Z, XU W, LI F, et al. Amplification of anticancer efficacy by co-delivery of doxorubicin and lonidamine with extracellular vesicles[J]. Drug Deliv, 2022, 29(1):192-202. doi: 10.1080/10717544.2021.2023697 |
[14] |
LIU Y Q, ZHANG X J, ZHOU M J, et al. Mitochondrial-targeting lonidamine-doxorubicin nanoparticles for synergistic chemotherapy to conquer drug resistance[J]. ACS Appl Mater Interfaces, 2017, 9(50):43498-43507. doi: 10.1021/acsami.7b14577 |
[15] |
GRIPPA E, GATTO M T, LEONE M G, et al. Analysis of lonidamine in rat serum and testis by high performance liquid chromatography[J]. Biomed Chromatogr, 2001, 15(1):1-8. doi: 10.1002/bmc.14 |
[16] |
杨学礼, 张红蕾, 杨瑜涛, 等. HPLC法测定DNA纳米运输系统载药阿霉素的含量[J]. 药物分析杂志, 2019, 39(7):1239-1243. doi: 10.16155/j.0254-1793.2019.07.10 |
[17] |
朱站站, 王绍仙, 王亚伦, 等. 载阿霉素PEG-PLGA纳米粒的制备及优化[J]. 广州化工, 2022, 50(7):85-87. doi: 10.3969/j.issn.1001-9677.2022.07.026 |
[18] |
陈希, 黄佳, 葛雨欣, 等. 甲醇-水为流动相的HPLC法检测抗肿瘤药物盐酸阿霉素[J]. 嘉兴学院学报, 2021, 33(6):90-93. doi: 10.3969/j.issn.1671-3079.2021.06.016 |