[1] |
MUGGIA F M, BONETTI A, HOESCHELE J D, et al. Platinum antitumor complexes: 50 years since barnett rosenberg's discovery[J]. J Clin Oncol,2015,33(35):4219-4226. doi: 10.1200/JCO.2015.60.7481 |
[2] |
DILRUBA S, KALAYDA G V. Platinum-based drugs: past, present and future[J]. Cancer Chemother Pharmacol,2016,77(6):1103-1124. doi: 10.1007/s00280-016-2976-z |
[3] |
BUß I, HAMACHER A, SARIN N, et al. Relevance of copper transporter 1 and organic cation transporters 1-3 for oxaliplatin uptake and drug resistance in colorectal cancer cells[J]. Metallomics,2018,10(3):414-425. doi: 10.1039/C7MT00334J |
[4] |
KONISHI M, IMAI A, FUJII M, et al. Correlation of expression levels of copper transporter 1 and thymidylate synthase with treatment outcomes in patients with advanced non-small cell lung cancer treated with S-1/carboplatin doublet chemotherapy[J]. Asian Pac J Cancer Prev,2018,19(2):435-441. |
[5] |
PETRUZZELLI R, POLISHCHUK R S. Activity and trafficking of copper-transporting ATPases in tumor development and defense against platinum-based drugs[J]. Cells,2019,8(9):1080. doi: 10.3390/cells8091080 |
[6] |
LUKANOVIĆ D, HERZOG M, KOBAL B, et al. The contribution of copper efflux transporters ATP7A and ATP7B to chemoresistance and personalized medicine in ovarian cancer[J]. Biomedecine Pharmacother,2020,129:110401. doi: 10.1016/j.biopha.2020.110401 |
[7] |
BRAVO-CUELLAR A, ORTIZ-LAZARENO P C, SIERRA-DÍAZ E, et al. Pentoxifylline sensitizes cisplatin-resistant human cervical cancer cells to cisplatin treatment: involvement of mitochondrial and NF-kappa B pathways[J]. Front Oncol,2020,10:592706. doi: 10.3389/fonc.2020.592706 |
[8] |
ARNESANO F, NATILE G. Interference between copper transport systems and platinum drugs[J]. Semin Cancer Biol,2021,76:173-188. doi: 10.1016/j.semcancer.2021.05.023 |
[9] |
ZHANG J M, ZHAO B C, CHEN S Z, et al. Correction to near-infrared light irradiation induced mild hyperthermia enhances glutathione depletion and DNA interstrand cross-link formation for efficient chemotherapy[J]. ACS Nano,2020,14(11):16159-16160. doi: 10.1021/acsnano.0c09203 |
[10] |
LIANG S, HAN L Q, MU W W, et al. Carboplatin-loaded SMNDs to reduce GSH-mediated platinum resistance for prostate cancer therapy[J]. J Mater Chem B,2018,6(43):7004-7014. doi: 10.1039/C8TB01721B |
[11] |
DAUBEUF S, BALIN, LEROY P, et al. Different mechanisms for gamma-glutamyltransferase-dependent resistance to carboplatin and cisplatin[J]. Biochem Pharmacol,2003,66(4):595-604. doi: 10.1016/S0006-2952(03)00343-5 |
[12] |
WANG L N, LIU Z J, HE S M, et al. Fighting against drug-resistant tumors by the inhibition of γ-glutamyl transferase with supramolecular platinum prodrug nano-assemblies[J]. J Mater Chem B,2021,9(22):4587-4595. doi: 10.1039/D1TB00149C |
[13] |
GANSUKH T, DONIZY P, HALON A, et al. In vitro analysis of the relationships between metallothionein expression and cisplatin sensitivity of non-small cellular lung cancer cells[J]. Anticancer Res,2013,33(12):5255-5260. |
[14] |
BORCHERT S, SUCKRAU P M, WALTER R F H, et al. Impact of metallothionein-knockdown on cisplatin resistance in malignant pleural mesothelioma[J]. Sci Rep,2020,10(1):18677. doi: 10.1038/s41598-020-75807-x |
[15] |
SUGASAWA K. Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair[J]. DNA Repair (Amst),2016,44:110-117. doi: 10.1016/j.dnarep.2016.05.015 |
[16] |
ZHANG C J, GAO S, HOU J W. ERCC1 expression and platinum chemosensitivity in patients with ovarian cancer: a meta-analysis[J]. Int J Biol Markers,2020,35(4):12-19. doi: 10.1177/1724600820963396 |
[17] |
HE Y W, CHEN D Y, YI Y M, et al. Histone deacetylase inhibitor sensitizes ERCC1-high non-small-cell lung cancer cells to cisplatin via regulating miR-149[J]. Mol Ther Oncolytics,2020,17:448-459. doi: 10.1016/j.omto.2020.05.001 |
[18] |
BOULIKAS T. Xeroderma pigmentosum and molecular cloning of DNA repair genes[J]. Anticancer Res,1996,16(2):693-708. |
[19] |
PRADHAN S, DAS P, MATTAPARTHI V S K. Characterizing the binding interactions between DNA-binding proteins, XPA and XPE: a molecular dynamics approach[J]. ACS Omega,2018,3(11):15442-15454. doi: 10.1021/acsomega.8b01793 |
[20] |
PAJUELO-LOZANO N, BARGIELA-IPARRAGUIRRE J, DOMINGUEZ G, et al. XPA, XPC, and XPD modulate sensitivity in gastric cisplatin resistance cancer cells[J]. Front Pharmacol,2018,9:1197. doi: 10.3389/fphar.2018.01197 |
[21] |
WADA T, FUKUDA T, SHIMOMURA M, et al. XPA expression is a predictive marker of the effectiveness of neoadjuvant chemotherapy for locally advanced uterine cervical cancer[J]. Oncol Lett,2018,15(3):3766-3771. |
[22] |
LI C, LI T Z, HUANG L F, et al. Self-assembled lipid nanoparticles for ratiometric codelivery of cisplatin and siRNA targeting XPF to combat drug resistance in lung cancer[J]. Chem Asian J,2019,14(9):1570-1576. doi: 10.1002/asia.201900005 |
[23] |
CINIERO G, ELMENOUFY A H, GENTILE F, et al. Enhancing the activity of platinum-based drugs by improved inhibitors of ERCC1-XPF-mediated DNA repair[J]. Cancer Chemother Pharmacol,2021,87(2):259-267. doi: 10.1007/s00280-020-04213-x |
[24] |
LIU Y B, MEI Y, TIAN Z W, et al. Downregulation of RIF1 enhances sensitivity to platinum-based chemotherapy in epithelial ovarian cancer (EOC) by regulating nucleotide excision repair (NER) pathway[J]. Cell Physiol Biochem,2018,46(5):1971-1984. doi: 10.1159/000489418 |
[25] |
MOGGS J G, SZYMKOWSKI D E, YAMADA M, et al. Differential human nucleotide excision repair of paired and mispaired cisplatin-DNA adducts[J]. Nucleic Acids Res,1997,25(3):480-491. doi: 10.1093/nar/25.3.480 |
[26] |
BELLACOSA A. Functional interactions and signaling properties of mammalian DNA mismatch repair proteins[J]. Cell Death Differ,2001,8(11):1076-1092. doi: 10.1038/sj.cdd.4400948 |
[27] |
SAWANT A, KOTHANDAPANI A, ZHITKOVICH A, et al. Role of mismatch repair proteins in the processing of cisplatin interstrand cross-links[J]. DNA Repair (Amst),2015,35:126-136. doi: 10.1016/j.dnarep.2015.10.003 |
[28] |
ZHAO C C, LI S S, ZHAO M H, et al. Prognostic values of DNA mismatch repair genes in ovarian cancer patients treated with platinum-based chemotherapy[J]. Arch Gynecol Obstet,2018,297(1):153-159. doi: 10.1007/s00404-017-4563-x |
[29] |
ENDRIS V, STENZINGER A, PFARR N, et al. NGS-based BRCA1/2 mutation testing of high-grade serous ovarian cancer tissue: results and conclusions of the first international round robin trial[J]. Virchows Arch,2016,468(6):697-705. doi: 10.1007/s00428-016-1919-8 |
[30] |
DIÉRAS V, HAN H S, KAUFMAN B, et al. Veliparib with carboplatin and paclitaxel in BRCA-mutated advanced breast cancer (BROCADE3): a randomized, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol,2020,21(10):1269-1282. doi: 10.1016/S1470-2045(20)30447-2 |
[31] |
ŠKAPA P. BRCA1 and BRCA2 - pathologists starting kit[J]. Cesk Patol,2016,52(4):193-196. |
[32] |
O'GRADY S, FINN S P, CUFFE S, et al. The role of DNA repair pathways in cisplatin resistant lung cancer[J]. Cancer Treat Rev,2014,40(10):1161-1170. doi: 10.1016/j.ctrv.2014.10.003 |
[33] |
OUZON-SHUBEITA H, BAKER M, KOAG M C, et al. Structural basis for the bypass of the major oxaliplatin-DNA adducts by human DNA polymerase Η[J]. Biochem J,2019,476(4):747-758. doi: 10.1042/BCJ20180848 |
[34] |
LI X Q, REN J, CHEN P, et al. Co-inhibition of Pol η and ATR sensitizes cisplatin-resistant non-small cell lung cancer cells to cisplatin by impeding DNA damage repair[J]. Acta Pharmacol Sin,2018,39(8):1359-1372. doi: 10.1038/aps.2017.187 |
[35] |
KONG L H, MURATA M M, DIGMAN M A. Absence of REV3L promotes p53-regulated cancer cell metabolism in cisplatin-treated lung carcinoma cells[J]. Biochem Biophys Res Commun,2018,496(1):199-204. doi: 10.1016/j.bbrc.2018.01.026 |
[36] |
VASSEL F M, BIAN K, WALKER G C, et al. Rev7 loss alters cisplatin response and increases drug efficacy in chemotherapy-resistant lung cancer[J]. Proc Natl Acad Sci USA,2020,117(46):28922-28924. doi: 10.1073/pnas.2016067117 |
[37] |
ZHANG J, SUN W Q, REN C, et al. A PolH transcript with a short 3'UTR enhances PolH expression and mediates cisplatin resistance[J]. Cancer Res,2019,79(14):3714-3724. doi: 10.1158/0008-5472.CAN-18-3928 |
[38] |
LIU Y Q, HU F J, ZHAO L. Effect of nano-platinum on proliferation and apoptosis of non-small cell lung cancer cells via P53 pathway[J]. J Nanosci Nanotechnol,2021,21(2):903-908. doi: 10.1166/jnn.2021.18629 |
[39] |
PENG H Q, HOGG D, MALKIN D, et al. Mutations of the p53 gene do not occur in testis cancer[J]. Cancer Res,1993,53(15):3574-3578. |
[40] |
LI X D, CHEN W, ZENG W S, et al. microRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP[J]. Br J Cancer,2017,116(1):66-76. doi: 10.1038/bjc.2016.379 |
[41] |
LI X D, CHEN W, JIN Y H, et al. miR-142-5p enhances cisplatin-induced apoptosis in ovarian cancer cells by targeting multiple anti-apoptotic genes[J]. Biochem Pharmacol,2019,161:98-112. doi: 10.1016/j.bcp.2019.01.009 |
[42] |
CHEN W, ZENG W S, LI X D, et al. microRNA-509-3p increases the sensitivity of epithelial ovarian cancer cells to cisplatin-induced apoptosis[J]. Pharmacogenomics,2016,17(3):187-197. doi: 10.2217/pgs.15.166 |
[43] |
HUA Y Q, ZHU Y D, ZHANG J J, et al. miR-122 targets X-linked inhibitor of apoptosis protein to sensitize oxaliplatin-resistant colorectal cancer cells to oxaliplatin-mediated cytotoxicity[J]. Cell Physiol Biochem,2018,51(5):2148-2159. doi: 10.1159/000495832 |
[44] |
QI Y X, YANG W P, LIU S, et al. Cisplatin loaded multiwalled carbon nanotubes reverse drug resistance in NSCLC by inhibiting EMT[J]. Cancer Cell Int,2021,21(1):74. doi: 10.1186/s12935-021-01771-9 |
[45] |
ALAM M, MISHRA R. Bcl-xL expression and regulation in the progression, recurrence, and cisplatin resistance of oral cancer[J]. Life Sci,2021,280:119705. doi: 10.1016/j.lfs.2021.119705 |
[46] |
GARCÍA-CANO J, ROCHE O, CIMAS F J, et al. p38MAPK and chemotherapy: we always need to hear both sides of the story[J]. Front Cell Dev Biol,2016,4:69. |
[47] |
WU Q H, WU W D, JACEVIC V, et al. Selective inhibitors for JNK signalling: a potential targeted therapy in cancer[J]. J Enzyme Inhib Med Chem,2020,35(1):574-583. doi: 10.1080/14756366.2020.1720013 |
[48] |
LIN X X, JIA Y L, DONG X W, et al. Diplatin, a novel and low-toxicity anti-lung cancer platinum complex, activation of cell death in tumors via a ROS/JNK/p53-dependent pathway, and a low rate of acquired treatment resistance[J]. Front Pharmacol,2019,10:982. doi: 10.3389/fphar.2019.00982 |
[49] |
AL-KHAYAL K, VAALI-MOHAMMED M A, ELWATIDY M, et al. Correction to: a novel coordination complex of platinum (PT) induces cell death in colorectal cancer by altering redox balance and modulating MAPK pathway[J]. BMC Cancer,2020,20(1):834. doi: 10.1186/s12885-020-07245-x |
[50] |
KOREN CARMI Y, MAHMOUD H, KHAMAISI H, et al. Flavonoids restore platinum drug sensitivity to ovarian carcinoma cells in a phospho-ERK1/2-dependent fashion[J]. Int J Mol Sci,2020,21(18):E6533. doi: 10.3390/ijms21186533 |
[51] |
DAN G. Multi-action Pt(IV) anticancer agents; do we understand how they work? J Inorg Biochem,2019,191:77-84. doi: 10.1016/j.jinorgbio.2018.11.008 |
[52] |
RAVAIOLI A, PAPI M, PASQUINI E, et al. Lipoplatin monotherapy: a phase II trial of second-line treatment of metastatic non-small-cell lung cancer[J]. J Chemother,2009,21(1):86-90. doi: 10.1179/joc.2009.21.1.86 |
[53] |
ZOU Y, WU Q P, TANSEY W, et al. Effectiveness of water soluble poly(L-glutamic acid)-camptothecin conjugate against resistant human lung cancer xenografted in nude mice[J]. Int J Oncol,2001,18(2):331-336. |
[54] |
HAN Y, YIN W, LI J J, et al. Intracellular glutathione-depleting polymeric micelles for cisplatin prodrug delivery to overcome cisplatin resistance of cancers[J]. J Control Release,2018,273:30-39. doi: 10.1016/j.jconrel.2018.01.019 |
[55] |
ZHAO Y, ZHANG L X, JIANG T, et al. The ups and downs of poly(ADP-ribose) polymerase-1 inhibitors in cancer therapy-current progress and future direction[J]. Eur J Med Chem,2020,203:112570. doi: 10.1016/j.ejmech.2020.112570 |
[56] |
LI H F, WANG C M, LAN L X, et al. PARP1 inhibitor combined with oxaliplatin efficiently suppresses oxaliplatin resistance in gastric cancer-derived organoids via homologous recombination and the base excision repair pathway[J]. Front Cell Dev Biol,2021,9:719192. doi: 10.3389/fcell.2021.719192 |