[1] |
LANKS C W, MUSANI A I, HSIA D W. Community-acquired pneumonia and hospital-acquired pneumonia[J]. Med Clin North Am, 2019, 103(3):487-501. doi: 10.1016/j.mcna.2018.12.008 |
[2] |
中华中医药学会内科分会, 中华中医药学会肺系病分会, 中国民族医药学会肺病分会. 社区获得性肺炎中医诊疗指南(2018修订版)[J]. 中医杂志, 2019, 60(4):350-360. |
[3] |
TORRES A, CILLONIZ C, NIEDERMAN M S, et al. Pneumonia[J]. Nat Rev Dis Primers, 2021, 7:25. doi: 10.1038/s41572-021-00259-0 |
[4] |
WUNDERINK R G, WATERER G. Advances in the causes and management of community acquired pneumonia in adults[J]. BMJ, 2017, 358:j2471. |
[5] |
沈玲玲, 胡志军, 王志良, 等. 金银花中总黄酮的提取及其消除自由基的研究[J]. 时珍国医国药, 2011, 22(5):1169-1171. doi: 10.3969/j.issn.1008-0805.2011.05.060 |
[6] |
鄢宇梅, 米佳佳, 付英豪, 等. 基于Nrf2/HO-1通路的黄芪-灯盏细辛成分配伍对缺氧缺糖PC12细胞氧化损伤研究[J]. 中药药理与临床, 2022, 38(2):159-164. |
[7] |
巩克民, 季宏建. 白术多糖对Ang-Ⅱ诱导的血管平滑肌细胞增殖及氧化应激的作用[J]. 中成药, 2022, 44(1):235-239. doi: 10.3969/j.issn.1001-1528.2022.01.046 |
[8] |
杨馨, 张金娟, 宛蕾, 等. 太子参抗心肌细胞缺氧/复氧损伤的活性部位筛选及作用机制研究[J]. 中国药房, 2018, 29(14):1958-1964. doi: 10.6039/j.issn.1001-0408.2018.14.20 |
[9] |
WANG Z, LIAO S G, HE Y, et al. Protective effects of fractions from Pseudostellaria heterophylla against cobalt chloride-induced hypoxic injury in H9c2 cell[J]. J Ethnopharmacol, 2013, 147(2):540-545. doi: 10.1016/j.jep.2013.03.053 |
[10] |
刘双利, 姜程曦, 赵岩, 等. 防风化学成分及其药理作用研究进展[J]. 中草药, 2017, 48(10):2146-2152. doi: 10.7501/j.issn.0253-2670.2017.10.032 |
[11] |
GUI Y J, SUN L J, LIU R, et al. Pachymic acid inhibits inflammation and cell apoptosis in lipopolysaccharide(LPS)-induced rat model with pneumonia by regulating NF-κB and MAPK pathways[J]. Allergol Immunopathol, 2021, 49(5):87-93. doi: 10.15586/aei.v49i5.468 |
[12] |
任丽娟, 杨广林, 陈文静, 等. 茯苓酸调节Nrf2/Keap1/ARE信号通路改善脂多糖诱导肺泡上皮细胞氧化应激损伤研究[J]. 中国药师, 2022, 25(9):1525-1530. |
[13] |
魏道智, 宁书菊, 林文雄. 佩兰的研究进展[J]. 时珍国医国药, 2007, 18(7):1782-1783. doi: 10.3969/j.issn.1008-0805.2007.07.147 |
[14] |
季宇彬, 姜薇, 范玉玲, 等. 甘草黄酮的研究进展[J]. 中草药, 2004, 35(9):1081-1082. doi: 10.3321/j.issn:0253-2670.2004.09.055 |
[15] |
管燕, 谢强敏. 甘草黄酮对肺部炎症小鼠细胞因子表达和氧化反应的调节作用[J]. 中草药, 2009, 40(8):1254-1259. |
[16] |
RU J L, LI P, WANG J N, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6:13. doi: 10.1186/1758-2946-6-13 |
[17] |
KIM S, CHEN J, CHENG T J, et al. PubChem 2023 update[J]. Nucleic Acids Res, 2023, 51(D1):D1373-D1380. doi: 10.1093/nar/gkac956 |
[18] |
SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11):2498-2504. doi: 10.1101/gr.1239303 |
[19] |
ZHOU Y, ZHANG Y T, LIAN X C, et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents[J]. Nucleic Acids Res, 2022, 50(D1):D1398-D1407. doi: 10.1093/nar/gkab953 |
[20] |
BARDOU P, MARIETTE J, ESCUDIÉ F, et al. Jvenn: an interactive Venn diagram viewer[J]. BMC Bioinformatics, 2014, 15(1):293. doi: 10.1186/1471-2105-15-293 |
[21] |
Heatmap was plotted byhttps://www.bioinformatics.com.cn(last accessed on 10 July 2023), an online platform for data analysis and visualization[CP]. |
[22] |
ROMBAUTS A, ABELENDA-ALONSO G, CUERVO G, et al. Role of the inflammatory response in community-acquired pneumonia: clinical implications[J]. Expert Rev Anti Infect Ther, 2022, 20(10):1261-1274. doi: 10.1080/14787210.2021.1834848 |
[23] |
CARULLO G, CAPPELLO A R, FRATTARUOLO L, et al. Quercetin and derivatives: useful tools in inflammation and pain management[J]. Future Med Chem, 2017, 9(1):79-93. doi: 10.4155/fmc-2016-0186 |
[24] |
GALVÁN-PEÑA S, CARROLL R G, NEWMAN C, et al. Malonylation of GAPDH is an inflammatory signal in macropha-ges[J]. Nat Commun, 2019, 10(1):338. doi: 10.1038/s41467-018-08187-6 |
[25] |
LIAO S T, HAN C, XU D Q, et al. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects[J]. Nat Commun, 2019, 10(1):5091. doi: 10.1038/s41467-019-13078-5 |
[26] |
LORENZO A D, FERNÁNDEZ-HERNANDO C, CIRINO G, et al. Akt1 is critical for acute inflammation and histamine-mediated vascular leakage[J]. Proc Natl Acad Sci U S A, 2009, 106(34):14552-14557. doi: 10.1073/pnas.0904073106 |
[27] |
NIE Y J, HU Y D, YU K K, et al. Akt1 regulates pulmonary fibrosis via modulating IL-13 expression in macrophages[J]. Innate Immun, 2019, 25(7):451-461. doi: 10.1177/1753425919861774 |
[28] |
FENG F F, JIN Y F, DUAN L J, et al. Regulation of ozone-induced lung inflammation by the epidermal growth factor receptor in mice[J]. Environ Toxicol, 2016, 31(12):2016-2027. doi: 10.1002/tox.22202 |
[29] |
VALLATH S, HYNDS R E, SUCCONY L, et al. Targeting EGFR signalling in chronic lung disease: therapeutic challenges and opportunities[J]. Eur Respir J, 2014, 44(2):513-522. doi: 10.1183/09031936.00146413 |
[30] |
YAMAOKA T, ARATA S, HOMMA M, et al. Blockade of EGFR activation promotes TNF-induced lung epithelial cell apoptosis and pulmonary injury[J]. Int J Mol Sci, 2019, 20(16):4021. doi: 10.3390/ijms20164021 |
[31] |
LI H, ZHAO C P, TIAN Y, et al. Src family kinases and pulmonary fibrosis: a review[J]. Biomedecine Pharmacother, 2020, 127:110183. doi: 10.1016/j.biopha.2020.110183 |
[32] |
REN Q, GUO F, TAO S B, et al. Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice[J]. Biomed Pharmacother, 2020, 122:109772. doi: 10.1016/j.biopha.2019.109772 |
[33] |
BYEON S E, YI Y S, OH J, et al. The role of Src kinase in macrophage-mediated inflammatory responses[J]. Mediators Inflamm, 2012, 2012:512926. |
[34] |
QI W D, QI W X, XIONG D W, et al. Quercetin: its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy[J]. Molecules, 2022, 27(19):6545. doi: 10.3390/molecules27196545 |
[35] |
WANG Y, WAN R J, PENG W, et al. Quercetin alleviates ferroptosis accompanied by reducing M1 macrophage polarization during neutrophilic airway inflammation[J]. Eur J Pharmacol, 2023, 938:175407. doi: 10.1016/j.ejphar.2022.175407 |
[36] |
DEVI K P, MALAR D S, NABAVI S F, et al. Kaempferol and inflammation: from chemistry to medicine[J]. Pharmacol Res, 2015, 99:1-10. doi: 10.1016/j.phrs.2015.05.002 |
[37] |
ALAM W, KHAN H, SHAH M A, et al. Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing[J]. Molecules, 2020, 25(18):4073. doi: 10.3390/molecules25184073 |
[38] |
AZIZ N, KIM M Y, CHO J Y. Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies[J]. J Ethnopharmacol, 2018, 225:342-358. doi: 10.1016/j.jep.2018.05.019 |
[39] |
CONTI P, CARAFFA A, GALLENGA C E, et al. Powerful anti-inflammatory action of luteolin: potential increase with IL-38[J]. Biofactors, 2021, 47(2):165-169. doi: 10.1002/biof.1718 |
[40] |
KURE A, NAKAGAWA K, KONDO M, et al. Metabolic fate of luteolin in rats: its relationship to anti-inflammatory effect[J]. J Agric Food Chem, 2016, 64(21):4246-4254. doi: 10.1021/acs.jafc.6b00964 |