[1] |
TIEN H C, SPENCER F, TREMBLAY L N, et al. Preventable deaths from hemorrhage at a level I Canadian trauma center[J]. J Trauma: Inj Infect Crit Care,2007,62(1):142-146. doi: 10.1097/01.ta.0000251558.38388.47 |
[2] |
WANG X X, LIU Q, SUI J X, et al. Recent advances in hemostasis at the nanoscale[J]. Adv Health Mater,2019,8(23):e1900823. doi: 10.1002/adhm.201900823 |
[3] |
DRULIS-KAWA Z, DOROTKIEWICZ-JACH A. Liposomes as delivery systems for antibiotics[J]. Int J Pharm,2010,387(1-2):187-198. doi: 10.1016/j.ijpharm.2009.11.033 |
[4] |
AKBARZADEH A, REZAEI-SADABADY R, DAVARAN S, et al. Liposome: classification, preparation, and applications[J]. Nanoscale Res Lett,2013,8(1):102. doi: 10.1186/1556-276X-8-102 |
[5] |
MICHAEL FITZPATRICK G. Novel platelet products under development for the treatment of thrombocytopenia or acute hemorrhage[J]. Transfus Apher Sci,2019,58(1):7-11. doi: 10.1016/j.transci.2018.12.010 |
[6] |
CHAN V, SARKARI M, SUNDERLAND R, et al. Platelets loaded with liposome-encapsulated thrombin have increased coagulability[J]. J Thromb Haemost,2018,16(6):1226-1235. doi: 10.1111/jth.14006 |
[7] |
NISHIKAWA K, HAGISAWA K, KINOSHITA M, et al. Fibrinogen γ-chain peptide-coated, ADP-encapsulated liposomes rescue thrombocytopenic rabbits from non-compressible liver hemorrhage[J]. J Thromb Haemost,2012,10(10):2137-2148. doi: 10.1111/j.1538-7836.2012.04889.x |
[8] |
HICKMAN D A, PAWLOWSKI C L, SHEVITZ A, et al. Intravenous synthetic platelet (SynthoPlate) nanoconstructs reduce bleeding and improve ‘golden hour’ survival in a porcine model of traumatic arterial hemorrhage[J]. Sci Rep,2018,8(1):3118. doi: 10.1038/s41598-018-21384-z |
[9] |
SINGH R, LILLARD J W. Nanoparticle-based targeted drug delivery[J]. Exp Mol Pathol,2009,86(3):215-223. doi: 10.1016/j.yexmp.2008.12.004 |
[10] |
HERRERO-VANRELL R, RINCÓN A C, ALONSO M, et al. Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release[J]. J Control Release,2005,102(1):113-122. doi: 10.1016/j.jconrel.2004.10.001 |
[11] |
BARSHTEIN G, ARBELL D, YEDGAR S, et al. Hemodynamic functionality of transfused red blood cells in the microcirculation of blood recipients[J]. Front Physiol,2018,9:41. doi: 10.3389/fphys.2018.00041 |
[12] |
BIRANJE S S, MADIWALE P V, PATANKAR K C, et al. Hemostasis and anti-necrotic activity of wound-healing dressing containing chitosan nanoparticles[J]. Int J Biol Macromol,2019,121:936-946. doi: 10.1016/j.ijbiomac.2018.10.125 |
[13] |
MEDDAHIPELLE A, LEGRAND A, MARCELLAN A, et al. Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanoparticles[J]. Angewandte Chemie,2014,53(25):6369-6373. doi: 10.1002/anie.201401043 |
[14] |
KUDELA D, SMITH S A, MAY-MASNOU A, et al. Clotting activity of polyphosphate-functionalized silica nanoparticles[J]. Angew Chem Int Ed Engl,2015,54(13):4018-4022. doi: 10.1002/anie.201409639 |
[15] |
SUNDARAM M N, AMIRTHALINGAM S, MONY U, et al. Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control[J]. Int J Biol Macromol,2019,129:936-943. doi: 10.1016/j.ijbiomac.2019.01.220 |
[16] |
GKIKAS M, PEPONIS T, MESAR T, et al. Systemically administered hemostatic nanoparticles for identification and treatment of internal bleeding[J]. ACS Biomater Sci Eng,2019,5(5):2563-2576. doi: 10.1021/acsbiomaterials.9b00054 |
[17] |
ELLIS-BEHNKE R G, LIANG Y X, TAY D K, et al. Nano hemostat solution: immediate hemostasis at the nanoscale[J]. Nanomedicine,2006,2(4):207-215. doi: 10.1016/j.nano.2006.08.001 |
[18] |
CHENG T Y, WU H C, HUANG M Y, et al. Self-assembling functionalized nanopeptides for immediate hemostasis and accelerative liver tissue regeneration[J]. Nanoscale,2013,5(7):2734-2744. doi: 10.1039/c3nr33710c |
[19] |
MORGAN C E, DOMBROWSKI A W, RUBERT PÉREZ C M, et al. Tissue-factor targeted peptide amphiphile nanofibers as an injectable therapy to control hemorrhage[J]. ACS Nano,2016,10(1):899-909. doi: 10.1021/acsnano.5b06025 |
[20] |
HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Compos Sci Technol,2003,63(15):2223-2253. doi: 10.1016/S0266-3538(03)00178-7 |
[21] |
YIN M, WANG Y, ZHANG Y, et al. Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties[J]. Carbohydr Polym,2020,232:115823. doi: 10.1016/j.carbpol.2019.115823 |
[22] |
LIU R, DAI L, SI C L, et al. Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers[J]. Carbohydr Polym,2018,195:63-70. doi: 10.1016/j.carbpol.2018.04.085 |
[23] |
DONG R H, QIN C C, QIU X, et al. In situ precision electrospinning as an effective delivery technique for cyanoacrylate medical glue with high efficiency and low toxicity[J]. Nanoscale,2015,7(46):19468-19475. doi: 10.1039/C5NR05786H |
[24] |
CHEN S, CARLSON M A, ZHANG Y S, et al. Fabrication of injectable and superelastic nanofiber rectangle matrices (“peanuts”) and their potential applications in hemostasis[J]. Biomaterials,2018,179:46-59. doi: 10.1016/j.biomaterials.2018.06.031 |
[25] |
SASMAL P, DATTA P. Tranexamic acid-loaded chitosan electrospun nanofibers as drug delivery system for hemorrhage control applications[J]. J Drug Deliv Sci Technol,2019,52:559-567. doi: 10.1016/j.jddst.2019.05.018 |
[26] |
KING D R, SCHREIBER M A. The mRDH bandage provides effective hemostasis in trauma and surgical hemorrhage[J]. J Trauma,2011,71(2 Suppl 1):S167-S170. |