[1] |
FISHER M C, HAWKINS N J, SANGLARD D, et al. Worldwide emergence of resistance to antifungal drugs challenges human health and food security[J]. Science,2018,360(6390):739-742. doi: 10.1126/science.aap7999 |
[2] |
BROWN G D, DENNING D W, LEVITZ S M. Tackling human fungal infections[J]. Science,2012,336(6082):647. doi: 10.1126/science.1222236 |
[3] |
PFALLER M A, DIEKEMA D J. Epidemiology of invasive mycoses in North America[J]. Crit Rev Microbiol,2010,36(1):1-53. doi: 10.3109/10408410903241444 |
[4] |
PFALLER M A, DIEKEMA D J. Epidemiology of invasive candidiasis: a persistent public health problem[J]. Clin Microbiol Rev,2007,20(1):133-163. doi: 10.1128/CMR.00029-06 |
[5] |
WISPLINGHOFF H, BISCHOFF T, TALLENT S M, et al. Nosocomial bloodstream infections in US hospitals: analysis of 24, 179 cases from a prospective nationwide surveillance study[J]. Clin Infect Dis,2004,39(3):309-317. doi: 10.1086/421946 |
[6] |
ODDS F C. Genomics, molecular targets and the discovery of antifungal drugs[J]. Rev Iberoam Micol,2005,22(4):229-237. doi: 10.1016/S1130-1406(05)70048-6 |
[7] |
ODDS F C, BROWN A J P, GOW N A R. Antifungal agents: mechanisms of action[J]. Trends Microbiol,2003,11(6):272-279. doi: 10.1016/S0966-842X(03)00117-3 |
[8] |
KIM J, LEE J E, LEE J S. Histone deacetylase-mediated morphological transition in Candida albicans[J]. J Microbiol,2015,53(12):805-811. doi: 10.1007/s12275-015-5488-3 |
[9] |
CUI L, MIAO J, FURUYA T, et al. Histone acetyltransferase inhibitor anacardic acid causes changes in global gene expression during in vitro Plasmodium falciparum development[J]. Eukaryot Cell,2008,7(7):1200-1210. doi: 10.1128/EC.00063-08 |
[10] |
LEE I, OH J H, SHWAB E K, et al. HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production[J]. Fungal Genet Biol,2009,46(10):782-790. doi: 10.1016/j.fgb.2009.06.007 |
[11] |
LOHSE M B, JOHNSON A D. Temporal anatomy of an epigenetic switch in cell programming: the white-opaque transition of C. albicans[J]. Mol Microbiol,2010,78(2):331-343. doi: 10.1111/j.1365-2958.2010.07331.x |
[12] |
HNISZ D, SCHWARZMÜLLER T, KUCHLER K. Transcriptional loops meet chromatin: a dual-layer network controls white-opaque switching in Candida albicans[J]. Mol Microbiol,2009,74(1):1-15. doi: 10.1111/j.1365-2958.2009.06772.x |
[13] |
ROBBINS N, LEACH M D, COWEN L E. Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance[J]. Cell Rep,2012,2(4):878-888. doi: 10.1016/j.celrep.2012.08.035 |
[14] |
LIU O W, CHUN C D, CHOW E D, et al. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans[J]. Cell,2008,135(1):174-188. doi: 10.1016/j.cell.2008.07.046 |
[15] |
DUMESIC P A, HOMER C M, MORESCO J J, et al. Product binding enforces the genomic specificity of a yeast polycomb repressive complex[J]. Cell,2015,160(1-2):204-218. doi: 10.1016/j.cell.2014.11.039 |
[16] |
黄海, 王彦, 李莹, 等. 白念珠菌的应激反应与耐药性[J]. 第二军医大学学报, 2010, 31(11):1239-1243. |
[17] |
KMETZSCH L. Histone deacetylases: Targets for antifungal drug development[J]. Virulence,2015,6(6):535-536. doi: 10.1080/21505594.2015.1049807 |
[18] |
SU S, LI X Y, YANG X M, et al. Histone acetylation/deacetylation in Candida albicans and their potential as antifungal targets[J]. Futur Microbiol,2020,15(11):1075-1090. doi: 10.2217/fmb-2019-0343 |
[19] |
PFALLER M A, MESSER S A, GEORGOPAPADAKOU N, et al. Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens[J]. J Clin Microbiol,2009,47(12):3797-3804. doi: 10.1128/JCM.00618-09 |