[1] |
王升, 蒋待泉, 康传志, 等. 药用植物次生代谢在中药材生态种植中的作用及利用[J]. 中国中药杂志, 2020, 45(9):2002-2008. |
[2] |
DUNLAP J C. Molecular bases for circadian clocks[J]. Cell,1999,96(2):271-290. doi: 10.1016/S0092-8674(00)80566-8 |
[3] |
BENDIX C, MARSHALL C M, HARMON F G. Circadian clock genes universally control key agricultural traits[J]. Mol Plant,2015,8(8):1135-1152. doi: 10.1016/j.molp.2015.03.003 |
[4] |
徐小冬, 谢启光. 植物生物钟研究的历史回顾与最新进展[J]. 自然杂志, 2013, 35(2):118-126. |
[5] |
BECKWITH E J, YANOVSKY M J. Circadian regulation of gene expression: at the crossroads of transcriptional and post-transcriptional regulatory networks[J]. Curr Opin Genet Dev,2014,27:35-42. doi: 10.1016/j.gde.2014.03.007 |
[6] |
ITO S, MATSUSHIKA A, YAMADA H, et al. Characterization of the APRR9 pseudo-response regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana[J]. Plant Cell Physiol,2003,44(11):1237-1245. doi: 10.1093/pcp/pcg136 |
[7] |
COCKRAM J, THIEL T, STEUERNAGEL B, et al. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae[J]. PLoS One,2012,7(9):e45307. doi: 10.1371/journal.pone.0045307 |
[8] |
陈华夏, 申国境, 王磊, 等. 4个物种CCT结构域基因家族的序列进化分析[J]. 华中农业大学学报, 2010, 29(6):669-676. |
[9] |
MATSUSHIKA A, MAKINO S, KOJIMA M, et al. Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock[J]. Plant Cell Physiol,2000,41(9):1002-1012. doi: 10.1093/pcp/pcd043 |
[10] |
KURUP S, JONES H D, HOLDSWORTH M J. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds[J]. Plant J,2000,21(2):143-155. doi: 10.1046/j.1365-313x.2000.00663.x |
[11] |
LEGNAIOLI T, CUEVAS J, MAS P. TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought[J]. EMBO J,2009,28(23):3745-3757. doi: 10.1038/emboj.2009.297 |
[12] |
GRUNDY J, STOKER C, CARRÉ I A. Circadian regulation of abiotic stress tolerance in plants[J]. Front Plant Sci,2015,6:648. |
[13] |
SEO P J, MAS P. STRESSing the role of the plant circadian clock[J]. Trends Plant Sci,2015,20(4):230-237. doi: 10.1016/j.tplants.2015.01.001 |
[14] |
SALOMÉ P A, WEIGEL D, MCCLUNG C R. The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation[J]. Plant Cell,2010,22(11):3650-3661. doi: 10.1105/tpc.110.079087 |
[15] |
NAKAMICHI N, KIBA T, HENRIQUES R, et al. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock[J]. Plant Cell,2010,22(3):594-605. doi: 10.1105/tpc.109.072892 |
[16] |
MIZUNO T. Two-component phosphorelay signal transduction systems in plants: from hormone responses to circadian rhythms[J]. Biosci Biotechnol Biochem,2005,69(12):2263-2276. doi: 10.1271/bbb.69.2263 |
[17] |
王晗. 生物钟生物学及其研究进展[J]. 生命科学, 2015, 27(11):1313-1319. |
[18] |
杨志福, 梅其炳, 蒋永培. 红花有效成分及药理作用[J]. 西北药学杂志, 2001, 16(3):131-133. doi: 10.3969/j.issn.1004-2407.2001.03.025 |
[19] |
刘飞. 红花黄酮类化合物生物合成途径关键酶基因的克隆与功能验证[D]. 上海: 第二军医大学, 2014. |
[20] |
GUO D D, GAO Y, LIU F, et al. Integrating molecular characterization and metabolites profile revealed CtCHI1& apos; s significant role in Carthamus tinctorius L[J]. BMC Plant Biol,2019,19(1):1-13. doi: 10.1186/s12870-018-1600-2 |
[21] |
BROWN B A, JENKINS G I. UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH[J]. Plant Physiol,2008,146(2):576-588. |
[22] |
FARRÉ E M, WEISE S E. The interactions between the circadian clock and primary metabolism[J]. Curr Opin Plant Biol,2012,15(3):293-300. doi: 10.1016/j.pbi.2012.01.013 |
[23] |
何贝轩, 郭丹丹, 贾鑫磊, 等. 昼夜节律钟调控花青素类成分的生物合成[J]. 药学学报, 2018, 53(3):345-355. |