[1] |
TAGLIALEGNA A. Helping C. difficile to thrive[J]. Nat Rev Microbiol, 2023, 21(2):65. |
[2] |
CHEN J, LI Y, WANG S, et al. Targeting Clostridioides difficile: new uses for old drugs[J]. Drug Discov Today, 2022, 27(7):1862-1873. doi: 10.1016/j.drudis.2022.03.021 |
[3] |
LIM S C, KNIGHT D R, RILEY T V. Clostridium difficile and one health[J]. Clin Microbiol Infect, 2020, 26(7):857-863. doi: 10.1016/j.cmi.2019.10.023 |
[4] |
LILIENKAMPF A, MAO J, WAN B, et al. Structure-activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating Mycobacterium tuberculosis[J]. J Med Chem, 2009, 52(7): 2109-2118. |
[5] |
SILVA J, BATTS D H, FEKETY R, et al. Treatment of Clostridium difficile colitis and diarrhea with vancomycin[J]. Am J Med, 1981, 71(5):815-822. |
[6] |
NASVELD P, KITCHENER S. Treatment of acute vivax malaria with tafenoquine[J]. Trans R Soc Trop Med Hyg, 2005, 99(1):2-5. doi: 10.1016/j.trstmh.2004.01.013 |
[7] |
LEATHAM P A, BIRD H A, WRIGHT V, et al. A double blind study of antrafenine, naproxen and placebo in osteoarthrosis[J]. Eur J Rheumatol Inflamm, 1983, 6(2):209-211. |
[8] |
LAM K H, GAMBARI R, YUEN M C W, et al. The preparation of 2, 6-disubstituted pyridinyl phosphine oxides as novel anti-cancer agents[J]. Bioorg Med Chem Lett, 2009, 19(8):2266-2269. doi: 10.1016/j.bmcl.2009.02.091 |
[9] |
MAHAMOUD A, CHEVALIER J, DAVIN-REGLI A, et al. Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates[J]. Curr Drug Targets, 2006, 7(7):843-847. doi: 10.2174/138945006777709557 |
[10] |
MUSIOL R, TABAK D, NIEDBALA H, et al. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis-inhibiting activity[J]. Bioorg Med Chem, 2008, 16(8):4490-4499. doi: 10.1016/j.bmc.2008.02.065 |
[11] |
PALIT P, PAIRA P, HAZRA A, et al. Phase transfer catalyzed synthesis of bis-quinolines: Antileishmanial activity in experimental visceral leishmaniasis and in vitro antibacterial evaluation[J]. Eur J Med Chem, 2009, 44(2):845-853. doi: 10.1016/j.ejmech.2008.04.014 |
[12] |
MUSIOL R, JAMPILEK J, KRALOVA K, et al. Investigating biological activity spectrum for novel quinoline analogues[J]. Bioorg Med Chem, 2007, 15(3):1280-1288. doi: 10.1016/j.bmc.2006.11.020 |
[13] |
BARNHAM K J, GAUTIER E C, KOK G B, et al. 8-hydroxy quinoline derivatives. WO2004007461 A1[P]. 2004. |
[14] |
LAM K H, GAMBARI R, LEE K K H, et al. Preparation of 8-hydroxyquinoline derivatives as potential antibiotics against Staphylococcus aureus[J]. Bioorg Med Chem Lett, 2014, 24(1):367-370. doi: 10.1016/j.bmcl.2013.10.072 |
[15] |
FENG L, MADDOX M M, ALAM M Z, et al. Synthesis, structure-activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as olympicin A and derivatives[J]. J Med Chem, 2014, 57(20):8398-8420. doi: 10.1021/jm500853v |
[16] |
ZHANG L, MEGGERS E. An extremely stable and orthogonal DNA base pair with a simplified three-carbon backbone[J]. J Am Chem Soc, 2005, 127(1):74-75. doi: 10.1021/ja043904j |
[17] |
KOHO K T. Preparation of carbostyryl derivatives as phosphodiesterase (PDE) inhibitors for treatment of heart failure, hypertension, Crohn’s disease, etc. JP2009040711[P]. 2009. |