[1] |
CHEN X, KO S K, KIM M J, et al. A thiol-specific fluorescent probe and its application for bioimaging[J]. Chem Commun (Camb),2010,46(16):2751-2753. doi: 10.1039/b925453f |
[2] |
ZHAO J, GAO J, XUE W, et al. Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells[J]. J Am Chem Soc,2018,140(2):578-581. doi: 10.1021/jacs.7b11161 |
[3] |
AMIRI S, AHMADI R, SALIMI A, et al. Ultrasensitive and highly selective FRET aptasensor for Hg2+ measurement in fish samples using carbon dots/AuNPs as donor/acceptor platform[J]. New J Chem,2018,42(19):16027-16035. doi: 10.1039/C8NJ02781A |
[4] |
GUO H, LI J S, LI Y W, et al. A turn-on fluorescent sensor for Hg2+ detection based on graphene oxide and DNA aptamers[J]. New J Chem,2018,42(13):11147-11152. doi: 10.1039/C8NJ01709C |
[5] |
FANG B Y, LI C, AN J, et al. HIV-related DNA detection through switching on hybridized quenched fluorescent DNA-Ag nanoclusters[J]. Nanoscale,2018,10(12):5532-5538. doi: 10.1039/C7NR09647J |
[6] |
GUO W, YUAN J, DONG Q, et al. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification[J]. J Am Chem Soc,2010,132(3):932-934. doi: 10.1021/ja907075s |
[7] |
WANG L J, REN M, ZHANG Q Y, et al. Excision repair-initiated enzyme-assisted bicyclic cascade signal amplification for ultrasensitive detection of uracil-DNA glycosylase[J]. Anal Chem,2017,89(8):4488-4494. doi: 10.1021/acs.analchem.6b04673 |
[8] |
XU N, WANG Q, LEI J, et al. Label-free triple-helix aptamer as sensing platform for “signal-on” fluorescent detection of thrombin[J]. Talanta,2015,132:387-391. doi: 10.1016/j.talanta.2014.09.031 |
[9] |
LATORRE A, SOMOZA Á. DNA-mediated silver nanoclusters: synthesis, properties and applications[J]. Chembiochem,2012,13(7):951-958. doi: 10.1002/cbic.201200053 |
[10] |
LIU J W. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development[J]. Trac Trends Anal Chem,2014,58:99-111. doi: 10.1016/j.trac.2013.12.014 |
[11] |
YEH H C, SHARMA J, HAN J J, et al. A DNA-silver nanocluster probe that fluoresces upon hybridization[J]. Nano Lett,2010,10(8):3106-3110. doi: 10.1021/nl101773c |
[12] |
WALCZAK S, MORISHITA K, AHMED M, et al. Towards understanding of poly-guanine activated fluorescent silver nanoclusters[J]. Nanotechnology,2014,25(15):155501. doi: 10.1088/0957-4484/25/15/155501 |
[13] |
RICHARDS C I, CHOI S, HSIANG J C, et al. Oligonucleotide-stabilized Ag nanocluster fluorophores[J]. J Am Chem Soc,2008,130(15):5038-5039. doi: 10.1021/ja8005644 |
[14] |
MA J L, YIN B C, YE B C. DNA template-regulated intergrowth of a fluorescent silver nanocluster emitter pair[J]. RSC Adv,2015,5(119):98467-98471. doi: 10.1039/C5RA21159J |
[15] |
LIN R, TAO G, CHEN Y, et al. Constructing a robust fluorescent DNA-stabilized silver nanocluster probe module by attaching a duplex moiety[J]. Chemistry,2017,23(45):10893-10900. doi: 10.1002/chem.201701879 |
[16] |
JIANG Y T, TANG Y G, MIAO P. Polydopamine nanosphere@silver nanoclusters for fluorescence detection of multiplex tumor markers[J]. Nanoscale,2019,11(17):8119-8123. doi: 10.1039/C9NR01307E |
[17] |
GAO S, ZHENG X, HU B, et al. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin[J]. Biosens Bioelectron,2017,89(pt 2):952-958. |