[1] |
ZHAO Y, ZHANG Y N, WANG K T, et al. Lenvatinib for hepatocellular carcinoma: From preclinical mechanisms to anti-cancer therapy[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(1):188391. doi: 10.1016/j.bbcan.2020.188391 |
[2] |
CHEN C Y, WU S M, LIN Y H, et al. Induction of nuclear protein-1 by thyroid hormone enhances platelet-derived growth factor A mediated angiogenesis in liver cancer[J]. Theranostics, 2019, 9(8):2361-2379. doi: 10.7150/thno.29628 |
[3] |
WANG Y J, LIU D F, ZHANG T Y, et al. FGF/FGFR signaling in hepatocellular carcinoma: from carcinogenesis to recent therapeutic intervention[J]. Cancers, 2021, 13(6):1360. doi: 10.3390/cancers13061360 |
[4] |
AL-SALAMA Z T, SYED Y Y, SCOTT L J. Lenvatinib: a review in hepatocellular carcinoma[J]. Drugs, 2019, 79(6):665-674. doi: 10.1007/s40265-019-01116-x |
[5] |
HATANAKA T, NAGANUMA A, KAKIZAKI S. Lenvatinib for hepatocellular carcinoma: a literature review[J]. Pharmaceuticals, 2021, 14(1):36. |
[6] |
FACCIORUSSO A, TARTAGLIA N, VILLANI R, et al. Lenvatinib versus sorafenib as first-line therapy of advanced hepatocellular carcinoma: a systematic review and meta-analysis[J]. Am J Transl Res, 2021, 13(4):2379-2387. |
[7] |
VENTURA C, JUNCO M, SANTIAGO VALTIERRA F X, et al. Synergism of small molecules targeting VDAC with sorafenib, regorafenib or lenvatinib on hepatocarcinoma cell proliferation and survival[J]. Eur J Pharmacol, 2023, 957:176034. doi: 10.1016/j.ejphar.2023.176034 |
[8] |
CHEN Y Y, WANG C C, LIU Y W, et al. Clinical impact of lenvatinib in patients with unresectable hepatocellular carcinoma who received sorafenib[J]. PeerJ, 2020, 8:e10382. doi: 10.7717/peerj.10382 |
[9] |
SUESHIGE Y, SHIRAIWA K, HONDA K, et al. A broad range high-throughput assay for lenvatinib using ultra-high performance liquid chromatography coupled to tandem mass spectrometry with clinical application in patients with hepatocellular carcinoma[J]. Ther Drug Monit, 2021, 43(5):664-671. doi: 10.1097/FTD.0000000000000872 |
[10] |
SPAHN S, KLEINHENZ F, SHEVCHENKO E, et al. The molecular interaction pattern of lenvatinib enables inhibition of wild-type or kinase-mutated FGFR2-driven cholangiocarcinoma[J]. Nat Commun, 2024, 15(1):1287. doi: 10.1038/s41467-024-45247-6 |
[11] |
TAO M, HAN J, SHI J Y, et al. Application and resistance mechanisms of lenvatinib in patients with advanced hepatocellular carcinoma[J]. J Hepatocell Carcinoma, 2023, 10:1069-1083. doi: 10.2147/JHC.S411806 |
[12] |
CHEN S Z, HAO X H, LIANG X J, et al. Inorganic nanomaterials as carriers for drug delivery[J]. J Biomed Nanotechnol, 2016, 12(1):1-27. doi: 10.1166/jbn.2016.2122 |
[13] |
JACOB S, NAIR A B, BODDU S H S, et al. The emerging role of lipid nanosystems and nanomicelles in liver diseases[J]. Eur Rev Med Pharmacol Sci, 2023, 27(18):8651-8680. |
[14] |
KIM S, OH S M, KIM S Y, et al. Role of adsorbed polymers on nanoparticle dispersion in drying polymer nanocomposite films[J]. Polymers, 2021, 13(17):2960. doi: 10.3390/polym13172960 |
[15] |
SAKAI-KATO K, YOSHIDA K, TAKECHI-HARAYA Y, et al. Physicochemical characterization of liposomes that mimic the lipid composition of exosomes for effective intracellular trafficking[J]. Langmuir, 2020, 36(42):12735-12744. doi: 10.1021/acs.langmuir.0c02491 |
[16] |
SINANI G, DURGUN M E, CEVHER E, et al. Polymeric-micelle-based delivery systems for nucleic acids[J]. Pharmaceutics, 2023, 15(8):2021. doi: 10.3390/pharmaceutics15082021 |
[17] |
MOHAN A, NAIR S V, LAKSHMANAN V K. Polymeric nanomicelles for cancer theragnostics[J]. Int J Polym Mater Polym Biomater, 2018, 67(2):119-130. doi: 10.1080/00914037.2017.1309540 |
[18] |
JIN G W, REJINOLD N S, CHOY J H. Multifunctional polymeric micelles for cancer therapy[J]. Polymers, 2022, 14(22):4839. doi: 10.3390/polym14224839 |
[19] |
MANJAPPA A S, KUMBHAR P S, PATIL A B, et al. Polymeric mixed micelles: improving the anticancer efficacy of single-copolymer micelles[J]. Crit Rev Ther Drug Carrier Syst, 2019, 36(1):1-58. doi: 10.1615/CritRevTherDrugCarrierSyst.2018020481 |
[20] |
PATHAN T, GIRASE M, RAY D, et al. Scrutinizing micellar transitions and interfacial properties in mixed micelles comprising sodium dodecyl sulfate and sodium oleate: a tensiometric and scattering insight[J]. J Mol Liq, 2024, 397:124138. doi: 10.1016/j.molliq.2024.124138 |
[21] |
LI C L, GUAN H, LI Z H, et al. Study on different particle sizes of DOX-loaded mixed micelles for cancer therapy[J]. Colloids Surf B Biointerfaces, 2020, 196:111303. doi: 10.1016/j.colsurfb.2020.111303 |