[1] |
PAUDEL Y N, ANGELOPOULOU E, SEMPLE B, et al. Potential Neuroprotective effect of the HMGB Inhibitor Glycyrrhizin in Neurological Disorders[J]. ACS Chem Neurosci,2020,11(4):485-500. doi: 10.1021/acschemneuro.9b00640 |
[2] |
WANG L R, MA S F, HU Z H, et al. Chemogenomics systems pharmacology mapping of potential drug targets for treatment of traumatic brain injury[J]. J Neurotrauma,2019,36(4):565-575. doi: 10.1089/neu.2018.5757 |
[3] |
MCGOVERN A J, BARRETO G E. Network pharmacology identifies IL6 as an important hub and target of tibolone for drug repurposing in traumatic brain injury[J]. Biomed Pharmacother,2021,140:111769. doi: 10.1016/j.biopha.2021.111769 |
[4] |
CAMPBELL B C V, DE SILVA D A, MACLEOD M R, et al. Ischaemic stroke[J]. Nat Rev Dis Primers,2019,5(1):70-70. doi: 10.1038/s41572-019-0118-8 |
[5] |
STOLL G, NIESWANDT B. Thrombo-inflammation in acute ischaemic stroke - implications for treatment[J]. Nat Rev Neurol,2019,15(8):473-481. doi: 10.1038/s41582-019-0221-1 |
[6] |
LIU X, YE M, AN C Y, et al. The effect of cationic albumin-conjugated PEGylated tanshinone IIA nanoparticles on neuronal signal pathways and neuroprotection in cerebral ischemia[J]. Biomaterials,2013,34(28):6893-6905. doi: 10.1016/j.biomaterials.2013.05.021 |
[7] |
WU S P, WANG N, ZHAO L. Network pharmacology reveals the mechanism of activity of Tongqiao Huoxue decoction extract against middle cerebral artery occlusion-induced cerebral ischemia-reperfusion injury[J]. Front Pharmacol,2021,11:572624. doi: 10.3389/fphar.2020.572624 |
[8] |
ZHANG R H, LIU Z K, YANG D S, et al. Phytochemistry and pharmacology of the genus Leonurus: The herb to benefit the mothers and more[J]. Phytochemistry,2018,147:167-183. doi: 10.1016/j.phytochem.2017.12.016 |
[9] |
WOJTYNIAK K, SZYMAŃSKI M, MATŁAWSKA I. Leonurus cardiaca L. (motherwort): a review of its phytochemistry and pharmacology[J]. Phytother Res,2013,27(8):1115-1120. doi: 10.1002/ptr.4850 |
[10] |
KUANG P G, ZHOU X F, ZHANG F Y, et al. Motherwort and cerebral ischemia[J]. J Tradit Chin Med,1988,8(1):37-40. |
[11] |
PRAVALIKA K, SARMAH D, KAUR H, et al. Trigonelline therapy confers neuroprotection by reduced glutathione mediated myeloperoxidase expression in animal model of ischemic stroke[J]. Life Sci,2019,216:49-58. doi: 10.1016/j.lfs.2018.11.014 |
[12] |
SINGH V, SHRI R, KRISHAN P, et al. Isolation and characterization of components responsible for neuroprotective effects of Allium cepa outer scale extract against ischemia reperfusion induced cerebral injury in mice[J]. J Food Sci,2020,85(11):4009-4017. doi: 10.1111/1750-3841.15474 |
[13] |
WANG Y Y, CHANG C Y, LIN S Y, et al. Quercetin protects against cerebral ischemia/reperfusion and oxygen glucose deprivation/reoxygenation neurotoxicity[J]. J Nutr Biochem,2020,83:108436. doi: 10.1016/j.jnutbio.2020.108436 |
[14] |
梁博志, 罗建华, 杨冬花, 等. 益母草碱作用及机制研究进展[J]. 贵阳中医学院学报, 2017, 39(4):93-96,101. |
[15] |
雷晓青, 陈鳌, 刘毅, 等. 山萘酚药理作用的研究进展[J]. 微量元素与健康研究, 2017, 34(2):61-62. |
[16] |
GONG G, GUAN Y Y, ZHANG Z L, et al. Isorhamnetin: a review of pharmacological effects[J]. Biomedecine Pharmacother,2020:128.110301. |
[17] |
CHENG F, ZHOU Y X, WANG M, et al. A review of pharmacological and pharmacokinetic properties of stachydrine[J]. Pharmacol Res,2020:155.104755. |
[18] |
SHAO S, XU M W, ZHOU J J, et al. Atorvastatin attenuates ischemia/reperfusion-induced hippocampal neurons injury via Akt-nNOS-JNK signaling pathway[J]. Cell Mol Neurobiol,2017,37(4):753-762. doi: 10.1007/s10571-016-0412-x |
[19] |
HAO M Q, XIE L J, LENG W, et al. Trim47 is a critical regulator of cerebral ischemia-reperfusion injury through regulating apoptosis and inflammation[J]. Biochem Biophys Res Commun,2019,515(4):651-657. doi: 10.1016/j.bbrc.2019.05.065 |
[20] |
SUI S H, SUN L, ZHANG W J, et al. LncRNA MEG8 attenuates cerebral ischemia after ischemic stroke through targeting miR-130a-5p/VEGFA signaling[J]. Cell Mol Neurobiol,2021,41(6):1311-1324. doi: 10.1007/s10571-020-00904-4 |
[21] |
ZHAO W J, ZHANG H F, SU J Y. Downregulation of microRNA-195 promotes angiogenesis induced by cerebral infarction via targeting VEGFA[J]. Mol Med Rep,2017,16(4):5434-5440. doi: 10.3892/mmr.2017.7230 |
[22] |
ABOUTALEB N, SHAMSAEI N, RAJABI H, et al. Protection of hippocampal CA1 neurons against ischemia/reperfusion injury by exercise preconditioning via modulation of bax/bcl-2 ratio and prevention of caspase-3 activation[J]. Basic Clin Neurosci,2016,7(1):21-29. |
[23] |
ALMEIDA A, SÁNCHEZ-MORÁN I, RODRÍGUEZ C. Mitochondrial-nuclear p53 trafficking controls neuronal susceptibility in stroke[J]. IUBMB Life,2021,73(3):582-591. doi: 10.1002/iub.2453 |
[24] |
ZINNHARDT B, VIEL T, WACHSMUTH L, et al. Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke[J]. J Cereb Blood Flow Metab,2015,35(11):1711-1721. doi: 10.1038/jcbfm.2015.149 |
[25] |
JIA L W, CHEN Y H, TIAN Y H, et al. MAPK pathway mediates the anti-oxidative effect of chicoric acid against cerebral ischemia-reperfusion injury in vivo[J]. Exp Ther Med,2018,15(2):1640-1646. |
[26] |
YAO X F, WANG Y H, ZHANG D Y. microRNA-21 confers neuroprotection against cerebral ischemia-reperfusion injury and alleviates blood-brain barrier disruption in rats via the MAPK signaling pathway[J]. J Mol Neurosci,2018,65(1):43-53. doi: 10.1007/s12031-018-1067-5 |
[27] |
WANG P F, XIONG X Y, CHEN J, et al. Function and mechanism of toll-like receptors in cerebral ischemic tolerance: from preconditioning to treatment[J]. J Neuroinflammation,2015,12:80. doi: 10.1186/s12974-015-0301-0 |
[28] |
PAN J Q, LI X, GUO F, et al. Ginkgetin attenuates cerebral ischemia–reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway[J]. Biosci Rep,2019,39(9):20191452. doi: 10.1042/BSR20191452 |
[29] |
ZHOU Z, DUN L, WEI B, et al. Musk ketone induces neural stem cell proliferation and differentiation in cerebral ischemia via activation of the PI3K/Akt signaling pathway[J]. Neuroscience,2020,435:1-9. doi: 10.1016/j.neuroscience.2020.02.031 |