[1] |
FERGUSON F M, GRAY N S. Kinase inhibitors: the road ahead[J]. Nat Rev Drug Discov,2018,17(5):353-377. doi: 10.1038/nrd.2018.21 |
[2] |
HARMSEN S, KOK R J. Kinase inhibitor conjugates[J]. Curr Pharm Des,2012,18(20):2891-2900. doi: 10.2174/138161212800672778 |
[3] |
FISCHER P M. Approved and experimental small-molecule oncology kinase inhibitor drugs: a mid-2016 overview[J]. Med Res Rev,2017,37(2):314-367. doi: 10.1002/med.21409 |
[4] |
OZVEGY-LACZKA C, CSEREPES J, ELKIND N B, et al. Tyrosine kinase inhibitor resistance in cancer: role of ABC multidrug transporters[J]. Drug Resist Updat,2005,8(1-2):15-26. doi: 10.1016/j.drup.2005.02.002 |
[5] |
BABINA I S, TURNER N C. Advances and challenges in targeting FGFR signalling in cancer[J]. Nat Rev Cancer,2017,17(5):318-332. doi: 10.1038/nrc.2017.8 |
[6] |
DONG L J, LEI D, ZHANG H J. Clinical strategies for acquired epidermal growth factor receptor tyrosine kinase inhibitor resistance in non-small-cell lung cancer patients[J]. Oncotarget,2017,8(38):64600-64606. doi: 10.18632/oncotarget.19925 |
[7] |
CROMM P M, CREWS C M. The proteasome in modern drug discovery: second life of a highly valuable drug target[J]. ACS Cent Sci,2017,3(8):830-838. doi: 10.1021/acscentsci.7b00252 |
[8] |
HERSHKO A, CIECHANOVER A. The ubiquitin system[J]. Annu Rev Biochem,1998,67:425-479. doi: 10.1146/annurev.biochem.67.1.425 |
[9] |
PICKART C M. Mechanisms underlying ubiquitination[J]. Annu Rev Biochem,2001,70:503-533. doi: 10.1146/annurev.biochem.70.1.503 |
[10] |
WATTS C. The endosome-lysosome pathway and information generation in the immune system[J]. Biochim Biophys Acta,2012,1824(1):14-21. doi: 10.1016/j.bbapap.2011.07.006 |
[11] |
MIZUSHIMA N, KOMATSU M. Autophagy: renovation of cells and tissues[J]. Cell,2011,147(4):728-741. doi: 10.1016/j.cell.2011.10.026 |
[12] |
MIZUSHIMA N, LEVINE B, CUERVO A M, et al. Autophagy fights disease through cellular self-digestion[J]. Nature,2008,451(7182):1069-1075. doi: 10.1038/nature06639 |
[13] |
SAKAMOTO K M, KIM K B, KUMAGAI A, et al. Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation[J]. Proc Natl Acad Sci U S A,2001,98(15):8554-8559. doi: 10.1073/pnas.141230798 |
[14] |
HU J T, HU B, WANG M L, et al. Discovery of ERD-308 as a highly potent proteolysis targeting Chimera (PROTAC) degrader of estrogen receptor (ER)[J]. J Med Chem,2019,62(3):1420-1442. doi: 10.1021/acs.jmedchem.8b01572 |
[15] |
SALAMI J, ALABI S, WILLARD R R, et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance[J]. Commun Biol,2018,1:100. doi: 10.1038/s42003-018-0105-8 |
[16] |
HAN X, WANG C, QIN C, et al. Discovery of ARD-69 as a highly potent proteolysis targeting Chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer[J]. J Med Chem,2019,62(2):941-964. doi: 10.1021/acs.jmedchem.8b01631 |
[17] |
ZHAO L J, HAN X, LU J F, et al. A highly potent PROTAC androgen receptor (AR) degrader ARD-61 effectively inhibits AR-positive breast cancer cell growth in vitro and tumor growth in vivo[J]. Neoplasia,2020,22(10):522-532. doi: 10.1016/j.neo.2020.07.002 |
[18] |
HAN X, ZHAO L J, XIANG W G, et al. Discovery of highly potent and efficient PROTAC degraders of androgen receptor (AR) by employing weak binding affinity VHL E3 ligase ligands[J]. J Med Chem,2019,62(24):11218-11231. doi: 10.1021/acs.jmedchem.9b01393 |
[19] |
HAN X, ZHAO L J, XIANG W G, et al. Strategies toward discovery of potent and orally bioavailable proteolysis targeting Chimera degraders of androgen receptor for the treatment of prostate cancer[J]. J Med Chem,2021,64(17):12831-12854. doi: 10.1021/acs.jmedchem.1c00882 |
[20] |
MATSUMOTO A. Faculty opinions recommendation of discovery of ARD-2585 as an exceptionally potent and orally active PROTAC degrader of androgen receptor for the treatment of advanced prostate cancer[J]. J Med Chem,2021,64(18):13487-13509. doi: 10.1021/acs.jmedchem.1c00900 |
[21] |
TAKWALE A D, JO S H, JEON Y U, et al. Design and characterization of cereblon-mediated androgen receptor proteolysis-targeting chimeras[J]. Eur J Med Chem,2020,208:112769. doi: 10.1016/j.ejmech.2020.112769 |
[22] |
CHEN L R, HAN L Q, MAO S J, et al. Discovery of A031 as effective proteolysis targeting chimera (PROTAC) androgen receptor (AR) degrader for the treatment of prostate cancer[J]. Eur J Med Chem,2021,216:113307. doi: 10.1016/j.ejmech.2021.113307 |
[23] |
KIM G Y, SONG C W, YANG Y S, et al. Chemical degradation of androgen receptor (AR) using bicalutamide analog–thalidomide PROTACs[J]. Molecules,2021,26(9):2525. doi: 10.3390/molecules26092525 |
[24] |
SCOTT D E, ROONEY T P C, BAYLE E D, et al. Systematic investigation of the permeability of androgen receptor PROTACs[J]. ACS Med Chem Lett,2020,11(8):1539-1547. doi: 10.1021/acsmedchemlett.0c00194 |
[25] |
LEE G T, NAGAYA N, DESANTIS J, et al. Effects of MTX-23, a novel PROTAC of androgen receptor splice variant-7 and androgen receptor, on CRPC resistant to second-line antiandrogen therapy[J]. Mol Cancer Ther,2021,20(3):490-499. doi: 10.1158/1535-7163.MCT-20-0417 |
[26] |
LIANG J J, XIE H, YANG R H, et al. Designed, synthesized and biological evaluation of proteolysis targeting chimeras (PROTACs) as AR degraders for prostate cancer treatment[J]. Bioorg Med Chem,2021,45:116331. doi: 10.1016/j.bmc.2021.116331 |
[27] |
BHUMIREDDY A, BANDARU N V M R, RAGHURAMI REDDY B, et al. Design, synthesis, and biological evaluation of phenyl thiazole-based AR-V7 degraders[J]. Bioorg Med Chem Lett,2022,55:128448. doi: 10.1016/j.bmcl.2021.128448 |
[28] |
ZHAO B S, BURGESS K. PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer[J]. Chem Commun (Camb),2019,55(18):2704-2707. doi: 10.1039/C9CC00163H |
[29] |
JIANG B S, WANG E S, DONOVAN K A, et al. Development of dual and selective degraders of cyclin-dependent kinases 4 and 6[J]. Angew Chem Int Ed Engl,2019,58(19):6321-6326. doi: 10.1002/anie.201901336 |
[30] |
ROBB C M, CONTRERAS J I, KOUR S, et al. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC)[J]. Chem Commun (Camb),2017,53(54):7577-7580. doi: 10.1039/C7CC03879H |
[31] |
OLSON C M, JIANG B S, ERB M A, et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation[J]. Nat Chem Biol,2018,14(2):163-170. doi: 10.1038/nchembio.2538 |
[32] |
BIAN J L, REN J, LI Y R, et al. Discovery of Wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity[J]. Bioorg Chem,2018,81:373-381. doi: 10.1016/j.bioorg.2018.08.028 |
[33] |
POWELL C E, GAO Y, TAN L, et al. Chemically induced degradation of anaplastic lymphoma kinase (ALK)[J]. J Med Chem,2018,61(9):4249-4255. doi: 10.1021/acs.jmedchem.7b01655 |
[34] |
ZHANG C W, HAN X R, YANG X B, et al. Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK)[J]. Eur J Med Chem,2018,151:304-314. doi: 10.1016/j.ejmech.2018.03.071 |
[35] |
WINTER GEORG E, BUCKLEY DENNIS L, JOSHIAWA P, et al. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation[J]. Science,2015,348(6241):1376-1381. doi: 10.1126/science.aab1433 |
[36] |
RAINA K, LU J, QIAN Y M, et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer[J]. Proc Natl Acad Sci USA,2016,113(26):7124-7129. doi: 10.1073/pnas.1521738113 |
[37] |
BAI L C, ZHOU B, YANG C Y, et al. Targeted degradation of BET proteins in triple-negative breast cancer[J]. Cancer Res,2017,77(9):2476-2487. doi: 10.1158/0008-5472.CAN-16-2622 |
[38] |
ZENGERLE M, CHAN K H, CIULLI A. Selective small molecule induced degradation of the BET bromodomain protein BRD4[J]. ACS Chem Biol,2015,10(8):1770-1777. doi: 10.1021/acschembio.5b00216 |
[39] |
ZHOU B, HU J T, XU F M, et al. Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression[J]. J Med Chem,2018,61(2):462-481. doi: 10.1021/acs.jmedchem.6b01816 |
[40] |
QIN C, HU Y, ZHOU B, et al. Discovery of QCA570 as an exceptionally potent and efficacious proteolysis targeting Chimera (PROTAC) degrader of the bromodomain and extra-terminal (BET) proteins capable of inducing complete and durable tumor regression[J]. J Med Chem,2018,61(15):6685-6704. doi: 10.1021/acs.jmedchem.8b00506 |
[41] |
YANG K, SONG Y L, XIE H B, et al. Development of the first small molecule histone deacetylase 6 (HDAC6) degraders[J]. Bioorg Med Chem Lett,2018,28(14):2493-2497. doi: 10.1016/j.bmcl.2018.05.057 |
[42] |
WU H, YANG K, ZHANG Z R, et al. Development of multifunctional histone deacetylase 6 degraders with potent antimyeloma activity[J]. J Med Chem,2019,62(15):7042-7057. doi: 10.1021/acs.jmedchem.9b00516 |
[43] |
AN Z X, LV W X, SU S, et al. Correction to: developing potent PROTACs tools for selective degradation of HDAC6 protein[J]. Protein Cell,2019,10(11):854-855. doi: 10.1007/s13238-019-0613-4 |
[44] |
SCHIEDEL M, HERP D, HAMMELMANN S, et al. Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting Chimera (PROTAC) based on sirtuin rearranging ligands (SirReals)[J]. J Med Chem,2018,61(2):482-491. doi: 10.1021/acs.jmedchem.6b01872 |
[45] |
HONG J Y, JING H, PRICE I R, et al. Simultaneous inhibition of SIRT2 deacetylase and defatty-acylase activities via a PROTAC strategy[J]. ACS Med Chem Lett,2020,11(11):2305-2311. doi: 10.1021/acsmedchemlett.0c00423 |
[46] |
LEE H, PUPPALA D, CHOI E Y, et al. Targeted degradation of the aryl hydrocarbon receptor by the PROTAC approach: a useful chemical genetic tool[J]. ChemBioChem,2007,8(17):2058-2062. doi: 10.1002/cbic.200700438 |
[47] |
CHU T T, GAO N, LI Q Q, et al. Specific knockdown of endogenous tau protein by peptide-directed ubiquitin-proteasome degradation[J]. Cell Chem Biol,2016,23(4):453-461. doi: 10.1016/j.chembiol.2016.02.016 |
[48] |
LU M C, LIU T, JIAO Q, et al. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway[J]. Eur J Med Chem,2018,146:251-259. doi: 10.1016/j.ejmech.2018.01.063 |
[49] |
WANG W J, ZHOU Q Z, JIANG T, et al. A novel small-molecule PROTAC selectively promotes tau clearance to improve cognitive functions in Alzheimer-like models[J]. Theranostics,2021,11(11):5279-5295. doi: 10.7150/thno.55680 |
[50] |
BUCKLEY D L, RAINA K, DARRICARRERE N, et al. HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins[J]. ACS Chem Biol,2015,10(8):1831-1837. doi: 10.1021/acschembio.5b00442 |
[51] |
SCHAPIRA M, CALABRESE M F, BULLOCK A N, et al. Targeted protein degradation: expanding the toolbox[J]. Nat Rev Drug Discov,2019,18(12):949-963. doi: 10.1038/s41573-019-0047-y |
[52] |
LU J, QIAN Y M, ALTIERI M, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4[J]. Chem Biol,2015,22(6):755-763. doi: 10.1016/j.chembiol.2015.05.009 |
[53] |
HE M, CAO C G, NI Z H, et al. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021)[J]. Signal Transduct Target Ther,2022,7(1):181. doi: 10.1038/s41392-022-00999-9 |
[54] |
SUN X Y, GAO H Y, YANG Y Q, et al. PROTACs: great opportunities for academia and industry[J]. Signal Transduct Target Ther,2019,4:64. doi: 10.1038/s41392-019-0101-6 |
[55] |
PETRYLAK D P, GAO X, VOGELZANG N J, et al. First-in-human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI).[J]. J Clin Oncol,2020,38:3500. doi: 10.1200/JCO.2020.38.15_suppl.3500 |
[56] |
FLANAGAN J J, QIAN Y, GOUGH S M, et al. ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer[J]. Cancer Research, 2019, 79(4): P5-04-18. |
[57] |
DONG G Q, DING Y, HE S P, et al. Molecular glues for targeted protein degradation: from serendipity to rational discovery[J]. J Med Chem,2021,64(15):10606-10620. doi: 10.1021/acs.jmedchem.1c00895 |
[58] |
KRÖNKE J, UDESHI N D, NARLA A, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells[J]. Science,2014,343(6168):301-305. doi: 10.1126/science.1244851 |
[59] |
KRÖNKE J, FINK E C, HOLLENBACH P W, et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS[J]. Nature,2015,523(7559):183-188. doi: 10.1038/nature14610 |
[60] |
OZAWA Y, KUSANO K, OWA T, et al. Therapeutic potential and molecular mechanism of a novel sulfonamide anticancer drug, indisulam (E7070) in combination with CPT-11 for cancer treatment[J]. Cancer Chemother Pharmacol,2012,69(5):1353-1362. doi: 10.1007/s00280-012-1844-8 |
[61] |
HAN T, GORALSKI M, GASKILL N, et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15[J]. Science, 2017, 356(6336): 7977. |
[62] |
BUSSIERE D E, XIE L L, SRINIVAS H, et al. Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex[J]. Nat Chem Biol,2020,16(1):15-23. doi: 10.1038/s41589-019-0411-6 |
[63] |
UHLEN M, FAGERBERG L, HALLSTROM B M, et al. Proteomics. Tissue-based map of the human proteome[J]. Science,2015,347(6220):1260419. doi: 10.1126/science.1260419 |
[64] |
BROWN K J, SEOL H, PILLAI D K, et al. The human secretome atlas initiative: implications in health and disease conditions[J]. Biochim Biophys Acta BBA Proteins Proteom,2013,1834(11):2454-2461. doi: 10.1016/j.bbapap.2013.04.007 |
[65] |
BANIK S M, PEDRAM K, WISNOVSKY S, et al. Lysosome-targeting chimaeras for degradation of extracellular proteins[J]. Nature,2020,584(7820):291-297. doi: 10.1038/s41586-020-2545-9 |
[66] |
AHN G, BANIK S M, MILLER C L, et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation[J]. Nat Chem Biol,2021,17(9):937-946. doi: 10.1038/s41589-021-00770-1 |
[67] |
RAMADAS B, KUMAR PAIN P, MANNA D. LYTACs: an emerging tool for the degradation of non-cytosolic proteins[J]. ChemMedChem,2021,16(19):2951-2953. doi: 10.1002/cmdc.202100393 |
[68] |
SCHERZINGER E, LURZ R, TURMAINE M, et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo[J]. Cell,1997,90(3):549-558. doi: 10.1016/S0092-8674(00)80514-0 |
[69] |
LI Z Y, WANG C, WANG Z Y, et al. Allele-selective lowering of mutant HTT protein by HTT–LC3 linker compounds[J]. Nature,2019,575(7781):203-209. doi: 10.1038/s41586-019-1722-1 |
[70] |
PEI J P, PAN X L, WANG A X, et al. Developing potent LC3-targeting AUTAC tools for protein degradation with selective autophagy[J]. Chem Commun (Camb),2021,57(97):13194-13197. doi: 10.1039/D1CC04661F |
[71] |
DONG G Q, WU Y, CHENG J F, et al. Ispinesib as an effective warhead for the design of autophagosome-tethering chimeras: discovery of potent degraders of nicotinamide phosphoribosyltransferase (NAMPT)[J]. J Med Chem,2022,65(11):7619-7628. doi: 10.1021/acs.jmedchem.1c02001 |
[72] |
FU Y H, CHEN N X, WANG Z Y, et al. Degradation of lipid droplets by chimeric autophagy-tethering compounds[J]. Cell Res,2021,31(9):965-979. doi: 10.1038/s41422-021-00532-7 |
[73] |
ANDING A L, BAEHRECKE E H. Cleaning House: Selective Autophagy of Organelles[J]. Dev Cell,2017,41(1):10-22. doi: 10.1016/j.devcel.2017.02.016 |
[74] |
TAKAHASHI D, MORIYAMA J, NAKAMURA T, et al. AUTACs: cargo-specific degraders using selective autophagy[J]. Mol Cell,2019,76(5):797-810. doi: 10.1016/j.molcel.2019.09.009 |
[75] |
JI C H, KIM H Y, LEE M J, et al. Author Correction: the AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system[J]. Nat Commun,2022,13:2108. doi: 10.1038/s41467-022-29845-w |
[76] |
LEBRAUD H, WRIGHT D J, JOHNSON C N, et al. Protein degradation by In-cell self-assembly of proteolysis targeting chimeras[J]. ACS Cent Sci,2016,2(12):927-934. doi: 10.1021/acscentsci.6b00280 |
[77] |
COTTON A D, NGUYEN D P, GRAMESPACHER J A, et al. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1[J]. J Am Chem Soc,2021,143(2):593-598. doi: 10.1021/jacs.0c10008 |
[78] |
XUE G, WANG K, ZHOU D L, et al. Light-induced protein degradation with photocaged PROTACs[J]. J Am Chem Soc,2019,141(46):18370-18374. doi: 10.1021/jacs.9b06422 |
[79] |
PFAFF P, SAMARASINGHE K T G, CREWS C M, et al. Reversible spatiotemporal control of induced protein degradation by bistable PhotoPROTACs[J]. ACS Cent Sci,2019,5(10):1682-1690. doi: 10.1021/acscentsci.9b00713 |