[1] AHMADI N, AHMADI A, KHEIRALI E, et al. Systemic infection with Candida albicans in breast tumor bearing mice: Cytokines dysregulation and induction of regulatory T cells[J]. J Mycol Med, 2019, 29(1):49-55. doi:  10.1016/j.mycmed.2018.10.006
[2] LI J, BUCHNER J. Structure, function and regulation of the hsp90 machinery[J]. Biomed J, 2013, 36(3):106-117. doi:  10.4103/2319-4170.113230
[3] LIN S F, LIN J D, HSUEH C, et al. Efficacy of an HSP90 inhibitor, ganetespib, in preclinical thyroid cancer models[J]. Oncotarget, 2017, 8(25):41294-41304. doi:  10.18632/oncotarget.17180
[4] WANG M N, SHEN A J, ZHANG C, et al. Development of heat shock protein(Hsp90)inhibitors to combat resistance to tyrosine kinase inhibitors through Hsp90-kinase interactions[J]. J Med Chem, 2016, 59(12):5563-5586. doi:  10.1021/acs.jmedchem.5b01106
[5] COWEN L E. The fungal Achilles' heel: targeting Hsp90 to cripple fungal pathogens[J]. Curr Opin Microbiol, 2013, 16(4):377-384. doi:  10.1016/j.mib.2013.03.005
[6] TIWARI S, THAKUR R, SHANKAR J. Role of heat-shock proteins in cellular function and in the biology of fungi[J]. Biotechnol Res Int, 2015, 2015:132635.
[7] LI L P, AN M M, SHEN H, et al. The non-Geldanamycin Hsp90 inhibitors enhanced the antifungal activity of fluconazole[J]. Am J Transl Res, 2015, 7(12):2589-2602.
[8] YUAN R, TU J, SHENG C Q, et al. Effects of Hsp90 inhibitor ganetespib on inhibition of azole-resistant Candida albicans[J]. Front Microbiol, 2021, 12:680382. doi:  10.3389/fmicb.2021.680382
[9] HE S, DONG G, WU S, et al. Small molecules simultaneously inhibiting p53-murine double minute 2(MDM2)interaction and histone deacetylases(HDACs): discovery of novel multitargeting antitumor agents[J]. J Med Chem, 2018, 61(16):7245-7260. doi:  10.1021/acs.jmedchem.8b00664
[10] WHITESELL L, ROBBINS N, HUANG D S, et al. Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus[J]. Nat Commun, 2019, 10(1):402. doi:  10.1038/s41467-018-08248-w
[11] ROUDBARMOHAMMADI S, ROUDBARY M, BAKHSHI B, et al. ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis[J]. Adv Biomed Res, 2016, 5:105. doi:  10.4103/2277-9175.183666
[12] NOBILE C J, NETT J E, ANDES D R, et al. Function of Candida albicans adhesin Hwp1 in biofilm formation[J]. Eukaryot Cell, 2006, 5(10):1604-1610. doi:  10.1128/EC.00194-06
[13] LI F, SVAROVSKY M J, KARLSSON A J, et al. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo[J]. Eukaryot Cell, 2007, 6(6):931-939. doi:  10.1128/EC.00049-07
[14] NOBILE C J, ANDES D R, NETT J E, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo[J]. PLoS Pathog, 2006, 2(7):e63. doi:  10.1371/journal.ppat.0020063
[15] KELLY M T, MACCALLUM D M, CLANCY S D, et al. The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence[J]. Mol Microbiol, 2004, 53(3):969-983. doi:  10.1111/j.1365-2958.2004.04185.x
[16] OLIVEIRA-PACHECO J, ALVES R, COSTA-BARBOSA A, et al. The role of Candida albicans transcription factor RLM1 in response to carbon adaptation[J]. Front Microbiol, 2018, 9:1127. doi:  10.3389/fmicb.2018.01127
[17] NOBILE C J, NETT J E, HERNDAY A D, et al. Biofilm matrix regulation by Candida albicans Zap1[J]. PLoS Biol, 2009, 7(6):e1000133. doi:  10.1371/journal.pbio.1000133
[18] 郭东东, 岳慧珍, 魏羽佳, 黄广华. 白念珠菌生物被膜形成的遗传调控机制[J]. 生物工程学报, 2017, 33(9):1567-1581.