留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

辐射防护相关信号通路研究现状

王静 章越凡 李铁军

王静, 章越凡, 李铁军. 辐射防护相关信号通路研究现状[J]. 药学实践与服务, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
引用本文: 王静, 章越凡, 李铁军. 辐射防护相关信号通路研究现状[J]. 药学实践与服务, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
WANG Jing, ZHANG Yuefan, LI Tiejun. Signaling pathways involved in radioprotection[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
Citation: WANG Jing, ZHANG Yuefan, LI Tiejun. Signaling pathways involved in radioprotection[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003

辐射防护相关信号通路研究现状

doi: 10.3969/j.issn.1006-0111.2017.01.003
基金项目: “重大新药创制”科技重大专项:军队特需药品发现技术平台(2011ZXJ09201-012)

Signaling pathways involved in radioprotection

  • 摘要: 人们在生活中接触到各种辐射,长期或者大剂量的辐射能够导致组织损伤,其机制通常与细胞凋亡、坏死、炎症等相关。目前关于辐射防护的研究越来越多,其中涉及多条通路,代表性的通路有:NFκB通路、MAPK通路、PI3K/Akt通路、p53通路以及STAT3通路。笔者综述了上述通路在辐射防护领域的作用与研究现状。
  • [1] Kamran MZ,Ranjan A, Kaur N,et al.Radioprotective agents:strategies andtranslational advances[J]. Med Res Rev, 2016, 36(3):461-493.
    [2] 王恺,刘超,刘永学.辐射防护剂的研究进展[J]. 癌变·畸变·突变, 2014, 26(2):157-160.
    [3] 王坤平, 徐勇, 李长燕.抗辐射药物研发进展[J]. 军事医学, 2015,39(6):464-467.
    [4] 舒彬, 刘真, 贾赤宇. 急性肺损伤/急性呼吸窘迫综合征与NF-κB信号转导关系的研究进展[J]. 中华损伤与修复杂志(电子版), 2016,11(2):147-150.
    [5] Joyce D, Albanese C, Steer J,et al.NF-kappaB and cell-cycle regulation:the cyclinconnection[J]. Cytokine Growth Factor Rev, 2001, 12(1):73-90.
    [6] Jung M, Dritschilo A. NF-kappa B signaling pathway as a target for human tumor radiosensitization[J]. Semin Radiat Oncol, 2001,11(4):346-351.
    [7] Russell JS, Raju U, Gumin GJ, et al. Inhibition of radiation-induced nuclear factor-kappaB activation by an anti-Ras single-chain antibody fragment:lack of involvement in radiosensitization[J]. Cancer Res, 2002, 62(8):2318-2326.
    [8] Gudkov AV, Komarova EA. Radioprotection:smart games with death[J]. J Clin Invest, 2010, 120(7):2270-2273.
    [9] Wang Y,Meng A, Lang H, et al. Activation of nuclear factor kappaB in vivo selectively protects the murine small intestine against ionizing radiation-induced damage[J]. Cancer Res, 2004, 64(17):6240-6246.
    [10] Burdelya LG,Krivokrysenko VI, Tallant TC,et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models[J]. Science, 2008, 320(5873):226-230.
    [11] Pal HC,Athar M, Elmets CA,et al. Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/AKT/NF kappaB signaling pathways in SKH-1 hairless mice[J]. Photochem Photobiol, 2015, 91(1):225-234.
    [12] Morrison DK. MAP kinase pathways[J]. Cold Spring HarbPerspect Biol, 2012, 4(11):1-5.
    [13] Leach JK,Van Tuyle G, Lin PS, et al. Ionizing radiation-induced mitochondria-dependent generation of reactive oxygen/nitrogen[J]. Cancer Res, 2001, 61(10):3894-3901.
    [14] Hagan MP, Wang L, Hanley JR, et al. Ionizing radiation-induced mitogen-activated protein (MAP) kinase activation in DU145 prostate carcinoma cells:MAP kinase inhibition enhances radiation-induced cell killing and G2/M-phase arrest[J]. Radiat Res, 2000,153(4):371-383.
    [15] Yacoub A,McKinstry R, Hinman D, et al. Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling[J]. Radiat Res, 2003, 159(4):439-452.
    [16] Golding SE, Rosenberg E, Neill S, et al. Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response[J]. Cancer Res, 2007, 67(3):1046-1053.
    [17] Rosette C, KarinM. Ultraviolet light and osmotic stress:activation of the JNK cascade through multiple growth factor and cytokine receptors[J]. Science, 1996, 274(5290):1194-1197.
    [18] Bar-Shira A,Rashi-Elkeles S, Zlochover L,et al. ATM-dependent activation of the gene encoding MAP kinase phosphatase 5 by radiomimetic DNA damage[J]. Oncogene, 2002, 21(5):849-855.
    [19] Potapova O, Haghighi A, Bost F, et al. The Jun kinase/stress-activated protein kinase pathway functions to regulate DNA repair and inhibition of the pathway sensitizes tumor cells to cisplatin[J]. J Biol Chem, 1997, 272(22):14041-14044.
    [20] Hayakawa J, Depatie C, Ohmichi M, et al. The activation of c-Jun NH2-terminal kinase (JNK) by DNA-damaging agents serves to promote drug resistance via activating transcription factor 2(ATF2)-dependent enhanced DNA repair[J]. J Biol Chem, 2003, 278(23):20582-20592.
    [21] MacLaren A, Black EJ, Clark W, et al. c-Jun-deficient cells undergo premature senescence as a result of spontaneous DNA damage accumulation[J]. Mol Cell Biol, 2004, 24(20):9006-9018.
    [22] Wang XF,Mcgowan CH, Zhao M,et al. Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest[J]. Mol Cell Biol, 2000,20(13):4543-4552.
    [23] Toulany M, BaumannM, RodemannHP. Stimulated PI3K-AKT signaling mediated through ligand or radiation-induced EGFR depends indirectly, but not directly, on constitutive K-Rasactivity[J]. Mol Cancer Res, 2007, 5(8):863-872.
    [24] McKenna WG,Muschel RJ, Gupta AK,et al. The RAS signal transduction pathway and its role in radiation sensitivity[J]. Oncogene, 2003, 22(37):5866-5875.
    [25] Bonnaud S,Niaudet C, Legoux F,et al. Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis[J]. Cancer Res, 2010, 70(23):9905-9915.
    [26] Wang J, Zhang Y, Zhu Q,et al.Emodin protects mice against radiation-induced mortality and intestinal injury via inhibition of apoptosis and modulation of p53[J]. Environ Toxicol Pharmacol, 2016, 46:311-318.
    [27] Komarova EA,Kondratov RV, Wang K, et al. Dual effect of p53 on radiation sensitivity in vivo:p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice[J]. Oncogene, 2004, 23(19):3265-3271.
    [28] 陈晓艳, 张江虹,邵春林. STAT3与辐射敏感相关性的研究进展[J]. 国际放射医学核医学杂志, 2016, 40(3):191-195.
    [29] Tan PX, Du SS, Ren C,et al. Radiation-induced Cochlea hair cell death:mechanisms and protection[J]. Asian Pac J Cancer Prev, 2013, 14(10):5631-5635.
    [30] Goel A, Aggarwal BB.Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs[J]. Nutr Cancer, 2010, 62(7):919-930.
  • [1] 张莲卿, 骆岩, 杨提, 姚佳晨, 李文艳.  基于FAERS数据库的艾塞那肽微球不良事件信号挖掘与研究 . 药学实践与服务, 2024, 42(10): 445-450. doi: 10.12206/j.issn.2097-2024.202403057
  • 加载中
计量
  • 文章访问数:  3137
  • HTML全文浏览量:  308
  • PDF下载量:  1427
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-13
  • 修回日期:  2016-12-19

辐射防护相关信号通路研究现状

doi: 10.3969/j.issn.1006-0111.2017.01.003
    基金项目:  “重大新药创制”科技重大专项:军队特需药品发现技术平台(2011ZXJ09201-012)

摘要: 人们在生活中接触到各种辐射,长期或者大剂量的辐射能够导致组织损伤,其机制通常与细胞凋亡、坏死、炎症等相关。目前关于辐射防护的研究越来越多,其中涉及多条通路,代表性的通路有:NFκB通路、MAPK通路、PI3K/Akt通路、p53通路以及STAT3通路。笔者综述了上述通路在辐射防护领域的作用与研究现状。

English Abstract

王静, 章越凡, 李铁军. 辐射防护相关信号通路研究现状[J]. 药学实践与服务, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
引用本文: 王静, 章越凡, 李铁军. 辐射防护相关信号通路研究现状[J]. 药学实践与服务, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
WANG Jing, ZHANG Yuefan, LI Tiejun. Signaling pathways involved in radioprotection[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
Citation: WANG Jing, ZHANG Yuefan, LI Tiejun. Signaling pathways involved in radioprotection[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
参考文献 (30)

目录

    /

    返回文章
    返回