[1] |
GARBACZ K. Anticancer activity of lactic acid bacteria[J]. Semin Cancer Biol, 2022, 86:356-366. doi: 10.1016/j.semcancer.2021.12.013 |
[2] |
SILVA W M, SOUSA C S, OLIVEIRA L C, et al. Comparative proteomic analysis of four biotechnological strains Lactococcus lactis through label-free quantitative proteomics[J]. Microb Biotechnol, 2019, 12(2):265-274. doi: 10.1111/1751-7915.13305 |
[3] |
WU J P, XIN Y P, KONG J, et al. Genetic tools for the development of recombinant lactic acid bacteria[J]. Microb Cell Fact, 2021, 20(1):118. doi: 10.1186/s12934-021-01607-1 |
[4] |
SAHA U B, SAROJ S D. Lactic acid bacteria: prominent player in the fight against human pathogens[J]. Expert Rev Anti Infect Ther, 2022, 20(11):1435-1453. doi: 10.1080/14787210.2022.2128765 |
[5] |
MAYS Z J, NAIR N U. Synthetic biology in probiotic lactic acid bacteria: At the frontier of living therapeutics[J]. Curr Opin Biotechnol, 2018, 53:224-231. doi: 10.1016/j.copbio.2018.01.028 |
[6] |
KRISHNAN S, ALDEN N, LEE K. Pathways and functions of gut microbiota metabolism impacting host physiology[J]. Curr Opin Biotechnol, 2015, 36:137-145. doi: 10.1016/j.copbio.2015.08.015 |
[7] |
HU Y Y, ZHANG L, WEN R X, et al. Role of lactic acid bacteria in flavor development in traditional Chinese fermented foods: a review[J]. Crit Rev Food Sci Nutr, 2022, 62(10):2741-2755. doi: 10.1080/10408398.2020.1858269 |
[8] |
WYSZYŃSKA A, KOBIERECKA P, BARDOWSKI J, et al. Lactic acid bacteria: 20 years exploring their potential as live vectors for mucosal vaccination[J]. Appl Microbiol Biotechnol, 2015, 99(7):2967-2977. doi: 10.1007/s00253-015-6498-0 |
[9] |
TAGUCHI S, OOI T, MIZUNO K, et al. Advances and needs for endotoxin-free production strains[J]. Appl Microbiol Biotechnol, 2015, 99(22):9349-9360. doi: 10.1007/s00253-015-6947-9 |
[10] |
HELANDER H F, FÄNDRIKS L. Surface area of the digestive tract–revisited[J]. Scand J Gastroenterol, 2014, 49(6):681-689. doi: 10.3109/00365521.2014.898326 |
[11] |
MORADI-KALBOLANDI S, MAJIDZADEH-A K, ABDOLVAHAB M H, et al. The role of mucosal immunity and recombinant probiotics in SARS-CoV2 vaccine development[J]. Probiotics Antimicrob Proteins, 2021, 13(5):1239-1253. doi: 10.1007/s12602-021-09773-9 |
[12] |
SONG A A, IN L L, LIM S, et al. A review on Lactococcus lactis: from food to factory[J]. Microb Cell Fact, 2017, 16(1):55. doi: 10.1186/s12934-017-0669-x |
[13] |
WEGMANN U, O'CONNELL-MOTHERWAY M, ZOMER A, et al. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363[J]. J Bacteriol, 2007, 189(8):3256-3270. doi: 10.1128/JB.01768-06 |
[14] |
DIVYA J B, VARSHA K K, NAMPOOTHIRI K M, et al. Probiotic fermented foods for health benefits[J]. Eng Life Sci, 2012, 12(4):377-390. doi: 10.1002/elsc.201100179 |
[15] |
VESA T, POCHART P, MARTEAU P. Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract[J]. Aliment Pharmacol Ther, 2000, 14(6):823-828. doi: 10.1046/j.1365-2036.2000.00763.x |
[16] |
KIMOTO H, NOMURA M, KOBAYASHI M, et al. Survival of lactococci during passage through mouse digestive tract[J]. Can J Microbiol, 2003, 49(11):707-711. doi: 10.1139/w03-092 |
[17] |
MORISHITA M, PEPPAS N A. Is the oral route possible for peptide and protein drug delivery?[J]. Drug Discov Today, 2006, 11(19-20):905-910. doi: 10.1016/j.drudis.2006.08.005 |
[18] |
SANDERS M E. Impact of probiotics on colonizing microbiota of the gut[J]. J Clin Gastroenterol, 2011, 45:S115-S119. doi: 10.1097/MCG.0b013e318227414a |
[19] |
TAN L L, MAHOTRA M, CHAN S Y, et al. In situ alginate crosslinking during spray-drying of lactobacilli probiotics promotes gastrointestinal-targeted delivery[J]. Carbohydr Polym, 2022, 286:119279. doi: 10.1016/j.carbpol.2022.119279 |
[20] |
DIVYA J B, NAMPOOTHIRI K M. Encapsulated Lactococcus lactis with enhanced gastrointestinal survival for the development of folate enriched functional foods[J]. Bioresour Technol, 2015, 188:226-230. doi: 10.1016/j.biortech.2015.01.073 |
[21] |
OH S H, KIM S H, JEON J H, et al. Cytoplasmic expression of a model antigen with M Cell-Targeting moiety in lactic acid bacteria and implication of the mechanism as a mucosal vaccine via oral route[J]. Vaccine, 2021, 39(30):4072-4081. doi: 10.1016/j.vaccine.2021.06.010 |
[22] |
SÁNCHEZ C, MAYO B. General and specialized vectors derived from pBM02, a new rolling circle replicating plasmid of Lactococcus lactis[J]. Plasmid, 2004, 51(3):265-271. doi: 10.1016/j.plasmid.2003.12.005 |
[23] |
HERNANDEZ-VALDES J A, HUANG C X, KOK J, et al. Another breaker of the wall: the biological function of the Usp45 protein of Lactococcus lactis[J]. Appl Environ Microbiol, 2020, 86(16):e00903-e00920. |
[24] |
LANDETE J M. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application[J]. Crit Rev Biotechnol, 2017, 37(3):296-308. doi: 10.3109/07388551.2016.1144044 |
[25] |
FRELET-BARRAND A. Lactococcus lactis, an attractive cell factory for the expression of functional membrane proteins[J]. Biomolecules, 2022, 12(2):180. doi: 10.3390/biom12020180 |
[26] |
MU D D, MONTALBÏ¿½N-LÏ¿½PEZ M, MASUDA Y, et al. Zirex: a novel zinc-regulated expression system for Lactococcus lactis[J]. Appl Environ Microbiol, 2013, 79(14):4503-4508. doi: 10.1128/AEM.00866-13 |
[27] |
BENBOUZIANE B, RIBELLES P, AUBRY C, et al. Development of a Stress-Inducible Controlled Expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces[J]. J Biotechnol, 2013, 168(2):120-129. doi: 10.1016/j.jbiotec.2013.04.019 |
[28] |
ZHANG B, LI A D, ZUO F L, et al. Recombinant Lactococcus lactis NZ9000 secretes a bioactive kisspeptin that inhibits proliferation and migration of human colon carcinoma HT-29 cells[J]. Microb Cell Fact, 2016, 15(1):102. doi: 10.1186/s12934-016-0506-7 |
[29] |
ZENG Z, YU R, ZUO F L, et al. Recombinant Lactococcus lactis expressing bioactive exendin-4 to promote insulin secretion and beta-cell proliferation in vitro[J]. Appl Microbiol Biotechnol, 2017, 101(19):7177-7186. doi: 10.1007/s00253-017-8410-6 |
[30] |
SZATRAJ K, SZCZEPANKOWSKA A K, CHMIELEWSKA-JEZNACH M. Lactic acid bacteria - promising vaccine vectors: possibilities, limitations, doubts[J]. J Appl Microbiol, 2017, 123(2):325-339. doi: 10.1111/jam.13446 |
[31] |
TAGHINEZHAD-S S, KEYVANI H, BERMÚDEZ-HUMARÁN L G, et al. Twenty years of research on HPV vaccines based on genetically modified lactic acid bacteria: an overview on the gut-vagina axis[J]. Cell Mol Life Sci, 2021, 78(4):1191-1206. doi: 10.1007/s00018-020-03652-2 |
[32] |
LEVIT R, CORTES-PEREZ N G, DE MORENO DE LEBLANC A, et al. Use of genetically modified lactic acid bacteria and bifidobacteria as live delivery vectors for human and animal health[J]. Gut Microbes, 2022, 14(1):2110821. doi: 10.1080/19490976.2022.2110821 |