[1] |
TANG J, YU J X, HUBBARD-LUCEY V M, et al. Trial watch: the clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors[J]. Nat Rev Drug Discov,2018,17(12):854-855. doi: 10.1038/nrd.2018.210 |
[2] |
CHIN M H W, GENTLEMAN E, COPPENS M O, et al. Rethinking cancer immunotherapy by embracing and engineering complexity[J]. Trends Biotechnol,2020,38(10):1054-1065. doi: 10.1016/j.tibtech.2020.05.003 |
[3] |
GIANNONE G, GHISONI E, GENTA S, et al. Immuno-metabolism and microenvironment in cancer: key players for immunotherapy[J]. Int J Mol Sci,2020,21(12):4414. doi: 10.3390/ijms21124414 |
[4] |
PATSOUKIS N, BROWN J, PETKOVA V, et al. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation[J]. Sci Signal,2012,5(230):ra46. |
[5] |
BOUSSIOTIS V A. Molecular and biochemical aspects of the PD-1 checkpoint pathway[J]. N Engl J Med,2016,375(18):1767-1778. doi: 10.1056/NEJMra1514296 |
[6] |
TAYLOR S, HUANG Y F, MALLETT G, et al. PD-1 regulates KLRG1+ group 2 innate lymphoid cells[J]. J Exp Med,2017,214(6):1663-1678. doi: 10.1084/jem.20161653 |
[7] |
OESTREICH K J, YOON H, AHMED R, et al. NFATc1 regulates PD-1 expression upon T cell activation[J]. J Immunol,2008,181(7):4832-4839. doi: 10.4049/jimmunol.181.7.4832 |
[8] |
MATHIEU M, COTTA-GRAND N, DAUDELIN J F, et al. Notch signaling regulates PD-1 expression during CD8(+) T-cell activation[J]. Immunol Cell Biol,2013,91(1):82-88. doi: 10.1038/icb.2012.53 |
[9] |
AUSTIN J W, LU P Y, MAJUMDER P, et al. STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells[J]. J Immunol,2014,192(10):4876-4886. doi: 10.4049/jimmunol.1302750 |
[10] |
STARON M M, GRAY S M, MARSHALL H D, et al. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8+ T cells during chronic infection[J]. Immunity,2014,41(5):802-814. doi: 10.1016/j.immuni.2014.10.013 |
[11] |
BALLY A P R, LU P Y, TANG Y, et al. NF-κB regulates PD-1 expression in macrophages[J]. J Immunol,2015,194(9):4545-4554. doi: 10.4049/jimmunol.1402550 |
[12] |
KAO C, OESTREICH K J, PALEY M A, et al. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection[J]. Nat Immunol,2011,12(7):663-671. doi: 10.1038/ni.2046 |
[13] |
GARCIA-DIAZ A, SHIN D S, MORENO B H, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression[J]. Cell Rep,2017,19(6):1189-1201. doi: 10.1016/j.celrep.2017.04.031 |
[14] |
ABBASZADEH H, KEIKHAEI B, MOTTAGHI S. A review of molecular mechanisms involved in anticancer and antiangiogenic effects of natural polyphenolic compounds[J]. Phytother Res,2019,33(8):2002-2014. doi: 10.1002/ptr.6403 |
[15] |
COSTEA T, VLAD O C, MICLEA L C, et al. Alleviation of multidrug resistance by flavonoid and non-flavonoid compounds in breast, lung, colorectal and prostate cancer[J]. Int J Mol Sci,2020,21(2):401. doi: 10.3390/ijms21020401 |
[16] |
COOMBS M R P, HARRISON M E, HOSKIN D W. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells[J]. Cancer Lett,2016,380(2):424-433. doi: 10.1016/j.canlet.2016.06.023 |
[17] |
XU L, ZHANG Y, TIAN K, et al. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects[J]. J Exp Clin Cancer Res,2018,37(1):261. doi: 10.1186/s13046-018-0929-6 |
[18] |
MAZEWSKI C, KIM M S, GONZALEZ DE MEJIA E. Anthocyanins, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico[J]. Sci Rep,2019,9(1):11560. doi: 10.1038/s41598-019-47903-0 |
[19] |
LIU X R, WANG L Y, JING N, et al. Biostimulating gut microbiome with bilberry anthocyanin combo to enhance anti-PD-L1 efficiency against murine colon cancer[J]. Microorganisms,2020,8(2):175. doi: 10.3390/microorganisms8020175 |
[20] |
WANG L Y, JIANG G Q, JING N, et al. Bilberry anthocyanin extracts enhance anti-PD-L1 efficiency by modulating gut microbiota[J]. Food Funct,2020,11(4):3180-3190. doi: 10.1039/D0FO00255K |
[21] |
DU G J, ZHANG Z Y, WEN X D, et al. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea[J]. Nutrients,2012,4(11):1679-1691. doi: 10.3390/nu4111679 |
[22] |
RAWANGKAN A, WONGSIRISIN P, NAMIKI K, et al. Green tea catechin is an alternative immune checkpoint inhibitor that inhibits PD-L1 expression and lung tumor growth[J]. Molecules,2018,23(8):2071. doi: 10.3390/molecules23082071 |
[23] |
TOMEH M A, HADIANAMREI R, ZHAO X B. A review of curcumin and its derivatives as anticancer agents[J]. Int J Mol Sci,2019,20(5):1033. doi: 10.3390/ijms20051033 |
[24] |
LIAO F, LIU L, LUO E, et al. Curcumin enhances anti-tumor immune response in tongue squamous cell carcinoma[J]. Arch Oral Biol,2018,92:32-37. doi: 10.1016/j.archoralbio.2018.04.015 |
[25] |
ALVAREZ M, SIMONETTA F, BAKER J, et al. Indirect impact of PD-1/PD-L1 blockade on a murine model of NK cell exhaustion[J]. Front Immunol,2020,11:7. doi: 10.3389/fimmu.2020.00007 |
[26] |
MALAGUARNERA L. Influence of resveratrol on the immune response[J]. Nutrients,2019,11(5):946. doi: 10.3390/nu11050946 |
[27] |
GWAK H, KIM S, DHANASEKARAN D N, et al. Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells[J]. Cancer Lett,2016,371(2):347-353. doi: 10.1016/j.canlet.2015.11.032 |
[28] |
VERDURA S, CUYÀS E, CORTADA E, et al. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity[J]. Aging,2020,12(1):8-34. doi: 10.18632/aging.102646 |
[29] |
LIN C C, CHIN Y T, SHIH Y J, et al. Resveratrol antagonizes thyroid hormone-induced expression of checkpoint and proliferative genes in oral cancer cells[J]. J Dent Sci,2019,14(3):255-262. doi: 10.1016/j.jds.2019.01.013 |
[30] |
ZHANG Y K, YANG S F, YANG Y, et al. Resveratrol induces immunogenic cell death of human and murine ovarian carcinoma cells[J]. Infect Agents Cancer,2019,14(1):27. doi: 10.1186/s13027-019-0247-4 |
[31] |
FANG W F, ZHANG J W, HONG S D, et al. EBV-driven LMP1 and IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: implications for oncotargeted therapy[J]. Oncotarget,2014,5(23):12189-12202. doi: 10.18632/oncotarget.2608 |
[32] |
QIN Y, QUAN H F, ZHOU X R, et al. The traditional uses, phytochemistry, pharmacology and toxicology of Dictamnus dasycarpus: a review[J]. J Pharm Pharmacol,2021,73(12):1571-1591. doi: 10.1093/jpp/rgab141 |
[33] |
KIM M J, KIM H. Anticancer effect of lycopene in gastric carcinogenesis[J]. J Cancer Prev,2015,20(2):92-96. doi: 10.15430/JCP.2015.20.2.92 |
[34] |
JIANG X F, WU H, ZHAO W, et al. Lycopene improves the efficiency of anti-PD-1 therapy via activating IFN signaling of lung cancer cells[J]. Cancer Cell Int,2019,19:68. doi: 10.1186/s12935-019-0789-y |
[35] |
HAN Z, LIU S, LIN H S, et al. Inhibition of murine hepatoma tumor growth by cryptotanshinone involves TLR7-dependent activation of macrophages and induction of adaptive antitumor immune defenses[J]. Cancer Immunol Immunother,2019,68(7):1073-1085. doi: 10.1007/s00262-019-02338-4 |
[36] |
GUO Y K, JI W, LU Y Y, et al. Triptolide reduces salivary gland damage in a non-obese diabetic mice model of Sjögren’s syndrome via JAK/STAT and NF-κB signaling pathways[J]. J Clin Biochem Nutr,2021,68(2):131-138. doi: 10.3164/jcbn.20-15 |
[37] |
LIANG M, FU J. Triptolide inhibits interferon-gamma-induced programmed death-1-ligand 1 surface expression in breast cancer cells[J]. Cancer Lett,2008,270(2):337-341. doi: 10.1016/j.canlet.2008.05.025 |
[38] |
ZHANG L, YU J S. Triptolide reverses helper T cell inhibition and down-regulates IFN-γ induced PD-L1 expression in glioma cell lines[J]. J Neurooncol,2019,143(3):429-436. doi: 10.1007/s11060-019-03193-0 |
[39] |
KUO C S, YANG C Y, LIN C K, et al. Triptolide suppresses oral cancer cell PD-L1 expression in the interferon-γ-modulated microenvironment in vitro, in vivo, and in clinical patients[J]. Biomed Pharmacother,2021,133:111057. doi: 10.1016/j.biopha.2020.111057 |
[40] |
LEE J, HAN Y, WANG W Y, et al. Phytochemicals in cancer immune checkpoint inhibitor therapy[J]. Biomolecules,2021,11(8):1107. doi: 10.3390/biom11081107 |
[41] |
YIM N H, KIM Y S, CHUNG H S. Inhibition of programmed death receptor-1/programmed death ligand-1 interactions by ginsenoside metabolites[J]. Molecules,2020,25(9):2068. doi: 10.3390/molecules25092068 |
[42] |
JIANG Z S, YANG Y F, YANG Y L, et al. Ginsenoside Rg3 attenuates cisplatin resistance in lung cancer by downregulating PD-L1 and resuming immune[J]. Biomed Pharmacother,2017,96:378-383. doi: 10.1016/j.biopha.2017.09.129 |
[43] |
HU M L, YANG J, QU L L, et al. Ginsenoside Rk1 induces apoptosis and downregulates the expression of PD-L1 by targeting the NF-κB pathway in lung adenocarcinoma[J]. Food Funct,2020,11(1):456-471. doi: 10.1039/C9FO02166C |
[44] |
WANG Z, LI M Y, ZHANG Z H, et al. Panaxadiol inhibits programmed cell death-ligand 1 expression and tumour proliferation via hypoxia-inducible factor (HIF)-1α and STAT3 in human colon cancer cells[J]. Pharmacol Res,2020,155:104727. doi: 10.1016/j.phrs.2020.104727 |