[1] |
WANG C, TRONGNETRPUNYA A, SAMUEL I B, et al. Compensatory neural activity in response to cognitive fatigue[J]. J Neurosci,2016,36(14):3919-3924. doi: 10.1523/JNEUROSCI.3652-15.2016 |
[2] |
TURRONI S, RAMPELLI S, BIAGI E, et al. Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500[J]. Microbiome,2017,5(1):39. doi: 10.1186/s40168-017-0256-8 |
[3] |
HOCKEY G R, SAUER J. Cognitive fatigue and complex decision making under prolonged isolation and confinement[J]. Adv Space Biol Med,1996,5:309-330. |
[4] |
PRICE R B, DUMAN R. Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model[J]. Mol Psychiatry,2020,25(3):530-543. doi: 10.1038/s41380-019-0615-x |
[5] |
BAKER E P, MAGNUSON E C, DAHLY A M, et al. The effects of enriched environment on the behavioral and corticosterone response to methamphetamine in adolescent and adult mice[J]. Dev Psychobiol,2018,60(6):664-673. doi: 10.1002/dev.21633 |
[6] |
GOTLIB I H, JOORMANN J. Cognition and depression: current status and future directions[J]. Annu Rev Clin Psychol,2010,6:285-312. doi: 10.1146/annurev.clinpsy.121208.131305 |
[7] |
MATTOS DOS SANTOS R. Isolation, social stress, low socioeconomic status and its relationship to immune response in Covid-19 pandemic context[J]. Brain Behav Immun Health,2020,7:100103. doi: 10.1016/j.bbih.2020.100103 |
[8] |
BUENO-ANTEQUERA J, MUNGUÍA-IZQUIERDO D. Exercise and depressive disorder[J]. Adv Exp Med Biol,2020,1228:271-287. |
[9] |
CAREK P J, LAIBSTAIN S E, CAREK S M. Exercise for the treatment of depression and anxiety[J]. Int J Psychiatry Med,2011,41(1):15-28. doi: 10.2190/PM.41.1.c |
[10] |
SCHNEIDER S, ABELN V, POPOVA J, et al. The influence of exercise on prefrontal cortex activity and cognitive performance during a simulated space flight to Mars (MARS500)[J]. Behav Brain Res,2013,236(1):1-7. |
[11] |
PITMAN R K, RASMUSSON A M, KOENEN K C, et al. Biological studies of post-traumatic stress disorder[J]. Nat Rev Neurosci,2012,13(11):769-787. doi: 10.1038/nrn3339 |
[12] |
ADAMEC R, HOLMES A, BLUNDELL J. Vulnerability to lasting anxiogenic effects of brief exposure to predator stimuli: sex, serotonin and other factors-relevance to PTSD[J]. Neurosci Biobehav Rev,2008,32(7):1287-1292. doi: 10.1016/j.neubiorev.2008.05.005 |
[13] |
TABBAA M, PAEDAE B, LIU Y, et al. Neuropeptide regulation of social attachment: the prairie vole model[J]. Compr Physiol,2016,7(1):81-104. |
[14] |
ALTHOBAITI Y S, ALMALKI A H. Effects of environmental enrichment on reinstatement of methamphetamine-induced conditioned place preference[J]. Behav Brain Res,2020,379:112372. doi: 10.1016/j.bbr.2019.112372 |
[15] |
HU C L, LUO Y, WANG H, et al. re-evaluation of the interrelationships among the behavioral tests in rats exposed to chronic unpredictable mild stress[J]. PLoS One,2017,12(9):e0185129. doi: 10.1371/journal.pone.0185129 |
[16] |
DAVIS K E, BURNETT K, GIGG J. Water and T-maze protocols are equally efficient methods to assess spatial memory in 3xTg Alzheimer's disease mice[J]. Behav Brain Res,2017,331:54-66. doi: 10.1016/j.bbr.2017.05.005 |
[17] |
VORHEES C V, WILLIAMS M T. Morris water maze: procedures for assessing spatial and related forms of learning and memory[J]. Nat Protoc,2006,1(2):848-858. doi: 10.1038/nprot.2006.116 |
[18] |
KAPADIA M, XU J, SAKIC B. The water maze paradigm in experimental studies of chronic cognitive disorders: Theory, protocols, analysis, and inference[J]. Neurosci Biobehav Rev,2016,68:195-217. doi: 10.1016/j.neubiorev.2016.05.016 |
[19] |
ZAMEER S, AKHTAR M, VOHORA D. Behavioral experimental paradigms for the evaluation of drug's influence on cognitive functions: interpretation of associative, spatial/nonspatial and working memory[J]. CNS Neurol Disord Drug Targets,2019,18(3):185-204. doi: 10.2174/1871527318666190112143834 |
[20] |
BHAGYA V, SRIKUMAR B N, RAJU T R, et al. The selective noradrenergic reuptake inhibitor reboxetine restores spatial learning deficits, biochemical changes, and hippocampal synaptic plasticity in an animal model of depression[J]. J Neurosci Res,2015,93(1):104-120. doi: 10.1002/jnr.23473 |
[21] |
KOUZUKI M, KITAO S, KAJU T, et al. Evaluation of the effect of aroma oil as a bath salt on cognitive function[J]. Psychogeriatrics,2020,20(2):163-171. doi: 10.1111/psyg.12481 |
[22] |
AKHONDZADEH S, MOSTAFAVI S A, KESHAVARZ S A, et al. A placebo controlled randomized clinical trial of Crocus sativus L. (saffron) on depression and food craving among overweight women with mild to moderate depression[J]. J Clin Pharm Ther,2020,45(1):134-143. doi: 10.1111/jcpt.13040 |
[23] |
YEUNG K S, HERNANDEZ M, MAO J J, et al. Herbal medicine for depression and anxiety: a systematic review with assessment of potential psycho-oncologic relevance[J]. Phytother Res,2018,32(5):865-891. doi: 10.1002/ptr.6033 |
[24] |
LAKHAN S E, VIEIRA K F. Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review[J]. Nutr J,2010,9:42. doi: 10.1186/1475-2891-9-42 |
[25] |
YOHN C N, GERGUES M M, SAMUELS B A. The role of 5-HT receptors in depression[J]. Mol Brain,2017,10(1):28. doi: 10.1186/s13041-017-0306-y |
[26] |
KASHANI L, ESLATMANESH S, SAEDI N, et al. Comparison of saffron versus fluoxetine in treatment of mild to moderate postpartum depression: a double-blind, randomized clinical trial[J]. Pharmacopsychiatry,2017,50(2):64-68. |
[27] |
BEN-ELIEZER D, YECHIAM E. Hypericum perforatum as a cognitive enhancer in rodents: a meta-analysis[J]. Sci Rep,2016,6:35700. doi: 10.1038/srep35700 |
[28] |
ZAAMI S, TAGLIABRACCI A, BERRETTA P, et al. Use of methylphenidate analogues as cognitive enhancers: the prelude to cosmetic neurology and an ethical issue[J]. Front Psychiatry,2020,10:1006. doi: 10.3389/fpsyt.2019.01006 |
[29] |
TORGERSON T, KHOJASTEH J, VASSAR M. Public awareness for a sexual assault hotline following a grey’s anatomy episode[J]. JAMA Intern Med,2020,180(3):456-458. doi: 10.1001/jamainternmed.2019.5280 |
[30] |
WHEBLE P C, SENA E S, MACLEOD M R. A systematic review and meta-analysis of the efficacy of piracetam and piracetam-like compounds in experimental stroke[J]. Cerebrovasc Dis,2008,25(1-2):5-11. doi: 10.1159/000111493 |
[31] |
ZIRAK N, SHAFIEE M, SOLTANI G, et al. Hypericum perforatum in the treatment of psychiatric and neurodegenerative disorders: current evidence and potential mechanisms of action[J]. J Cell Physiol,2019,234(6):8496-8508. doi: 10.1002/jcp.27781 |
[32] |
BOYLE N B, LAWTON C L, DYE L. The effects of magnesium supplementation on subjective anxiety[J]. Magnes Res,2016,29(3):120-125. |
[33] |
SARTORI S B, WHITTLE N, HETZENAUER A, et al. Magnesium deficiency induces anxiety and HPA axis dysregulation: modulation by therapeutic drug treatment[J]. Neuropharmacology,2012,62(1):304-312. doi: 10.1016/j.neuropharm.2011.07.027 |
[34] |
JACKA F N, OVERLAND S, STEWART R, et al. Association between magnesium intake and depression and anxiety in community-dwelling adults: the Hordaland Health Study[J]. Aust N Z J Psychiatry,2009,43(1):45-52. doi: 10.1080/00048670802534408 |
[35] |
SIDDIQUI M J, SALEH M S M, BASHARUDDIN S N B B, et al. Saffron (Crocus sativus L.): as an antidepressant[J]. J Pharm Bioallied Sci,2018,10(4):173-180. doi: 10.4103/JPBS.JPBS_83_18 |
[36] |
HOSSEINI A, RAZAVI B M, HOSSEINZADEH H. Pharmacokinetic properties of saffron and its active components[J]. Eur J Drug Metab Pharmacokinet,2018,43(4):383-390. doi: 10.1007/s13318-017-0449-3 |
[37] |
SHAFIEE M, AREKHI S, OMRANZADEH A, et al. Saffron in the treatment of depression, anxiety and other mental disorders: current evidence and potential mechanisms of action[J]. J Affect Disord,2018,227:330-337. doi: 10.1016/j.jad.2017.11.020 |
[38] |
MALCOLM B J, TALLIAN K. Essential oil of lavender in anxiety disorders: ready for prime time? Ment Health Clin,2017,7(4):147-155. doi: 10.9740/mhc.2017.07.147 |
[39] |
LÓPEZ V, NIELSEN B, SOLAS M, et al. Exploring pharmacological mechanisms of lavender (Lavandula angustifolia) essential oil on central nervous system targets[J]. Front Pharmacol,2017,8:280. doi: 10.3389/fphar.2017.00280 |
[40] |
SMILIN BELL ASEERVATHAM G, ABBIRAMI E, SIVASUDHA T, et al. Passiflora caerulea L. fruit extract and its metabolites ameliorate epileptic seizure, cognitive deficit and oxidative stress in pilocarpine-induced epileptic mice[J]. Metab Brain Dis,2020,35(1):159-173. doi: 10.1007/s11011-019-00501-5 |
[41] |
MOVAFEGH A, ALIZADEH R, HAJIMOHAMADI F, et al. Preoperative oral Passiflora incarnata reduces anxiety in ambulatory surgery patients: a double-blind, placebo-controlled study[J]. Anesth Analg,2008,106(6):1728-1732. doi: 10.1213/ane.0b013e318172c3f9 |
[42] |
LOPRESTI A L. Salvia (sage): a review of its potential cognitive-enhancing and protective effects[J]. Drugs R D,2017,17(1):53-64. doi: 10.1007/s40268-016-0157-5 |
[43] |
DINEL A L, LUCAS C, GUILLEMET D, et al. Chronic supplementation with a mix of Salvia officinalis and Salvia lavandulaefolia improves Morris water maze learning in normal adult C57Bl/6J mice[J]. Nutrients,2020,12(6):1777. doi: 10.3390/nu12061777 |
[44] |
BEILHARZ J E, MANIAM J, MORRIS M J. Diet-induced cognitive deficits: the role of fat and sugar, potential mechanisms and nutritional interventions[J]. Nutrients,2015,7(8):6719-6738. doi: 10.3390/nu7085307 |
[45] |
MARTÍNEZ GARCÍA R M, JIMÉNEZ ORTEGA A I, LÓPEZ SOBALER A M, et al. Estrategias nutricionales Que mejoran la función cognitiva[J]. Nutr Hosp,2018,35(6):16-19. |