[1] DOMAZETOVIC V, MARCUCCI G, IANTOMASI T, et al. Oxidative stress in bone remodeling: role of antioxidants[J]. Clin Cases Miner Bone Metab,2017,14(2):209-216. doi:  10.11138/ccmbm/2017.14.1.209
[2] REN X X, LIU H, WU X M, et al. Reactive oxygen species (ROS)-responsive biomaterials for the treatment of bone-related diseases[J]. Front Bioeng Biotechnol,2022,9:820468. doi:  10.3389/fbioe.2021.820468
[3] AZMAN K F, ZAKARIA R. D-Galactose-induced accelerated aging model: an overview[J]. Biogerontology,2019,20(6):763-782. doi:  10.1007/s10522-019-09837-y
[4] KOLOSOVA N G, STEFANOVA N A, KORBOLINA E E, et al. The senescence-accelerated oxys rats: a genetic model of premature aging and age-dependent degenerative diseases[J]. Adv Gerontol,2014,27(2):336-340.
[5] XU W M, LIU X Y, HE X H, et al. Bajitianwan attenuates D-galactose-induced memory impairment and bone loss through suppression of oxidative stress in aging rat model[J]. J Ethnopharmacol,2020,261:112992. doi:  10.1016/j.jep.2020.112992
[6] 徐武牧. 巴戟天丸抗老年性骨质疏松作用及其制剂工艺研究[D]. 上海: 海军军医大学, 2020.
[7]

KIM J M, LIN C J, STAVRE Z, et al. Osteoblast-osteoclast communication and bone homeostasis[J]. Cells,2020,9(9):2073. doi:  10.3390/cells9092073
[8]

Katsimbri P. The biology of normal bone remodelling[J]. Eur J Cancer Care (Engl),2017,26(6):2017Nov;26(6).
[9] 夏天爽, 刘晓燕, 蒋益萍, 等. 啤酒花经抗氧化途径减轻Aβ损伤成骨细胞作用研究[J]. 药学实践杂志, 2021, 39(6):509-514.
[10]

AN J, YANG H, ZHANG Q, et al. Natural products for treatment of osteoporosis: the effects and mechanisms on promoting osteoblast-mediated bone formation[J]. Life Sci,2016,147:46-58. doi:  10.1016/j.lfs.2016.01.024
[11]

AGIDIGBI T S, KIM C. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases[J]. Int J Mol Sci,2019,20(14):3576. doi:  10.3390/ijms20143576
[12]

KUDRYAVTSEVA A V, KRASNOV G S, DMITRIEV A A, et al. Mitochondrial dysfunction and oxidative stress in aging and cancer[J]. Oncotarget,2016,7(29):44879-44905. doi:  10.18632/oncotarget.9821
[13]

SIM H J, KIM J H, KOOK S H, et al. Glucose oxidase facilitates osteogenic differentiation and mineralization of embryonic stem cells through the activation of Nrf2 and ERK signal transduction pathways[J]. Mol Cell Biochem,2016,419(1-2):157-163. doi:  10.1007/s11010-016-2760-8
[14] 孙晓蕾. 啤酒花及黄腐酚改善铁超载致学习记忆损伤及骨丢失作用研究[D]. 济南: 山东中医药大学, 2021.
[15]

IBÁÑEZ L, FERRÁNDIZ M L, BRINES R, et al. Effects of Nrf2 deficiency on bone microarchitecture in an experimental model of osteoporosis[J]. Oxidative Med Cell Longev,2014,2014:726590.
[16]

RANA T, SCHULTZ M A, FREEMAN M L, et al. Loss of Nrf2 accelerates ionizing radiation-induced bone loss by upregulating RANKL[J]. Free Radic Biol Med,2012,53(12):2298-2307. doi:  10.1016/j.freeradbiomed.2012.10.536
[17]

SAMAKOVA A, GAZOVA A, SABOVA N, et al. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia[J]. Physiol Res,2019,68(Suppl 2):S131-S138.