[1] Wang L, Zeng R, Li C, et al. Self-assembled polypeptide-block-poly (vinylpyrrolidone) as prospective drug-delivery systems[J]. Colloids and Surfaces B:Biointerfaces, 2009, 74:284.
[2] Yokoyama M, Okano T, Sakurai Y, et al. Introduction of cisplatin into polymeric micelles[J]. J Control Release, 1996, 39:351.
[3] Shen Y, Jiasheng T. Synthesis and characterization of low molecular weight hyaluronic acid-based cationic micelles for efficient siRNA delivery[J]. Carbohydrate Polym, 2009, 77:95.
[4] Rijcken CJ, Snel CJ, Schiffelers RM, et al. Hydrolysable core-crosslinked thermosensitive polymeric micelles:synthesis, characterisation and in vivo studies[J]. Biomaterials, 2007, 28:5581.
[5] Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications[J]. Adv Drug Deliv Rev, 2003, 55:403.
[6] Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings[J]. Adv Drug Deliv Rev, 2001, 46:3.
[7] Zhang Z, Grijpma DW, Feijen J. Thermo-sensitive transition of monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate) films to micellar-like nanoparticles[J]. J Control Release, 2006, 112:57.
[8] Li Y, Kwon GS. Methotrexate esters of poly(ethyleneoxide)-blockpoly(2-hydroxyethyl-L-aspartamide). I Effects of the level of methotrexate conjugation on the stability of micelles and on drug release[J]. Pharm Res, 2000, 17:607.
[9] Kozlov MY, Melik-Nubarov NS, Batrakova EV, et al. Relationship between Pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes[J]. Macromolecules, 2000, 33:3305.
[10] Lavasanifar A, Samuel J, Kwon GS. The effect of alkyl core structure on micellar properties of poly(ethylene oxide)-block-poly(Laspartamide) derivatives[J]. Colloids Surfaces B Biointerfaces, 2001, 22:115.
[11] Lee ES, Na K, Bae YH. Polymeric micelles for tumor pH and folate mediated targeting[J]. J Control Release, 2003, 91:103.
[12] Lee ES, Na K, Bae YH, et al. Poly(l-histidine)-PEG block copolymer micelles and pH-induced destabilization[J]. J Control Release, 2003, 90:363.
[13] Rejinold NS, Muthunarayanan M, Divyarani VV, et al. Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery[J]. J Colloid Interface Sci, 2011, 360:39.
[14] Rejinold NS, Sreerekha PR, Chennazhi KP, et al. Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide) nanocarrier for curcumin drug delivery[J]. Int J Biol Macromol, 2011, 49:161.
[15] Kim JH, Emoto K, Iijima M, et al. Core-stabilized polymeric micelle as potential drug carrier:increased solubilization of taxol[J]. Polym Adv Technol, 1999, 10:647.
[16] Butsele KV, Sibreta P, Fustin CA, et al. Synthesis and pH-dependent micellization of diblock copolymer mixtures[J]. J Colloid Interf Sci, 2009, 329:235.
[17] Patil YB, Toti US, Khdair A, et al. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery[J]. Biomaterials, 2009, 30:859.
[18] Taillefer J, Jones MC, Brasseur N, et al. Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs[J]. J Pharm Sci, 2000, 89:52.
[19] Der ZL, Jui HH, Xian CF, et al. Synthesis, characterization and drug delivery behaviors of new PCP polymeric micelles[J]. Carbohydrate Polym, 2007, 68:544.
[20] Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery[J]. J Pharm Sci, 2003, 92:1343.
[21] Yunhai L, Xiaohong C, Mingbiao L, et al. Selfassembled micellar nanoparticles of a novel star copolymer for thermo and pH dual-responsive drug release[J]. J Colloid Interf Sci, 2009, 329:244.
[22] Wilhelm M, Zhao CL, Wang YC, et al. Poly(styrene-ethylene oxide) block copolymer micelle formation in water:a fluorescence probe study[J]. Macromolecules, 1991, 24:1033.
[23] Chen Y, Sone M, Fuchise K, et al. Structural effect of a series of block copolymers consisting of poly(Nisopropylacrylamide and poly(N-hydroxyethylacrylamide) on thermoresponsiv behavior[J]. React Funct Polym, 2009, 69:463.
[24] Cho YW, Lee J, Lee SC, et al. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles[J]. J Control Release, 2004, 97:249.
[25] Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature, the key role of tumor selective macromolecular drug targeting[J]. Adv Enzyme Regul, 2001, 41:189.
[26] Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect[J]. Adv Drug Deliv Rev, 2011, 63:170.
[27] Torchillin VP, Iakaubov LZ, Estrov Z. Therapeutic potential of antinuclear autoantibodies in cancer[J]. Cancer Ther, 2003, 1:179.
[28] Knock E, Deng L, Krupenko N, et al. Susceptibility to intestinal tumorigenesis in folate-deficient mice may be influenced by variation in one-carbon metabolism and DNA repair[J]. J Nutr Biochem, 2011, 22:1022.
[29] Hageluken A, Grunbaum L, Numberg B, et al. Lipophilic beta-adrenoceptor antagonist and local anaesthetics are effective direct activators of G-proteins[J]. Biochem Pharmacol, 1994, 47:1789.
[30] Dharap SS, Qiu B, Williams GC, et al. Molecular targeting of drug delivery systems to ovarian cancers by BH3 and LHRH peptides[J]. J Control Release, 2003, 91:61.
[31] Lee AL, Yong W, Cheng HY, et al. The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles[J]. Biomaterials, 2009, 30:919.
[32] Rijcken CJ, Snel CJ, Schiffelers RM, et al. Hydrolysable core-crosslinked thermosensitive polymeric micelles:synthesis, characterisation and in vivo studies[J]. Biomaterials, 2007, 28:5581.
[33] Mannaris C, Averkiou MA. Investigation of microbubble response to long pulses used in ultrasound-enhanced drug delivery[J]. Ultrasound Med Biol, 2012, 38:681.
[34] Wei A, Zhou D, Ruan J, et al. Anti-tumor and anti-angiogenic effects of Macrothelypteris viridifrons and its constituents by HPLC-DAD/MS analysis[J]. J Ethnopharmacol, 2012, 139:373.