[1] |
Fröhlich E, Roblegg E. Models for oral uptake of nanoparticles in consumer products[J]. Toxicology, 2012,291(1-3):10-17. |
[2] |
Chen XM, Elisia I, Kitts DD. Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using Taguchi design[J]. J Pharmacol Toxicol Meth, 2010, 61(3):334-342. |
[3] |
Behrens I, Stenberg P, Artursson P, et al. Transport of lipophilic drug molecules in a new mucus-secreting cell culture model based on HT29-MTX cells[J]. Pharm Res, 2001,18 (8):1138-1145. |
[4] |
Walter E, Janich S, Roessler BJ, et al. HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans[J]. J Pharm Sci,1996,85(10):1070-1076. |
[5] |
Woitiski CB, Sarmento B, Carvalho RA, et al. Facilitated nanoscale delivery of insulin across intestinal membrane models[J]. Int J Pharm, 2011, 412(1-2):123-131. |
[6] |
Rocha RA, Vélez D, Devesa V. In vitro evaluation of intestinal fluoride absorption using different cell models[J]. Toxicol Lett,2012,210(3):311-317. |
[7] |
Mahler GJ, Shuler ML, Glahn RP. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability[J]. J Nutr Biochem, 2009, 20(7):494-502. |
[8] |
Vázquez M, Calatayud M, Vélez D, et al. Intestinal transport of methylmercury and inorganic mercury in various models of Caco-2 and HT29-MTX cells[J].Toxicology,2013,311(3):147-153. |
[9] |
Sam M, Linda F, David JB, et al. Melittin as a Permeability EnhancerⅡ: In vitro investigations in human mucus secreting intestinal monolayers and rat colonic mucosae [ J]. Pharm Res, 2007, 24(7): 1346-1356. |
[10] |
Maresca M, Mahfoud R, Garmy N, et al. The Mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells[J]. Amer Soc Nutr Sci,2002,132 (9):2723-2731. |
[11] |
Gagnon M, Zihler Berner A, Chervet N, et al. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion[J].J Microbiol Meth,2013,94(3):274-279. |
[12] |
Lai YH, D'Souza MJ. Microparticle transport in the human intestinal M cell model[J]. J Drug Target, 2008, 16(1): 36-42. |
[13] |
Corr SC, Gahan CC, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis[J]. FEMS Immunol MedMicrobiol, 2008, 52(1): 2-12. |
[14] |
des Rieux A, Ragnarsson EG, Gullberg E, et al. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium[J]. Eur J Pharm Sci, 2005,25(4-5): 455-465. |
[15] |
Gullberg E, Leonard M, Karlsson J, et al. Expression of specific markers and particle transport in a new human intestinal M-cell model[J]. Biochem Biophys Res Commun, 2000, 279(3): 808-813. |
[16] |
des Rieux A, Fievez V, Théate I, et al. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells[J]. Eur J Pharm Sci, 2007, 30(5): 380-391. |
[17] |
Garinot M, Fiévez V, Pourcelle V, et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination[J]. J Control Release, 2007, 120(3):195-204. |
[18] |
Pielage JF, Cichon C, Greune L, et al. Reversible differentiation of Caco-2 cells reveals galectin-9 as a surface marker molecule for human follicle-associated epithelia and M cell-like cells[J]. Int J Biochem Cell Biol, 2007, 39(10): 1886-1901. |
[19] |
Kadiyala I, Looa Y, Roy K, et al. Transport of chitosan-DNA nanoparticles in human intestinal M-cell model versus normal intestinal enterocytes[J]. Eur J Pharm Sci, 2010, 39(1-3):103-109. |
[20] |
Tonry JH, Popov SG, Narayanan A, et al. In vivo murine and in vitro M-like cell models of gastrointestinal anthrax[J]. Microb Infect, 2013, 15(1):37-44. |
[21] |
Antunes F, Andrade F, Araújo F, et al. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs[J]. Eur J Pharm Biopharm, 2013, 83(3): 427-435. |
[22] |
Araújo F, Sarmento B.Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies[J].Int J Pharm, 2013, 458(1):128-134. |
[23] |
Han HK, Oh DM, Amidon GL. Cellular uptake mechanism of amino acid ester prodrugs in Caco-2/hPepT1 cells overexpressing a human peptide transporter[J]. Pharm Res,1998,15(9):1382-1386. |
[24] |
Annette B, Sibylle H, Kayoshi S, et al. Cell cultures as tools in biopharmacy[J]. Eur J Pharm Sci, 2000, 11 (Suppl2):S51-S60. |
[25] |
Tang F, Horie K, Borchardt RT. Are MDCK cells transfected with MRP2 gene a good model of the human intestinal mucosa?[J].Pharm Res, 2002, 19(6):773-779. |
[26] |
Cummins CL, Jacobsen W, Christians U, et al.CYP3A4-transfected Caco-2 cells as a tool for understanding biochemical absorption barriers: studies with sirolimus and midazolam[J]. J Pharmacol Exper Therap, 2004,308 (1):143-155. |
[27] |
Korjamo T, Monkkonen J, Uusitalo J, et al. Metabolic and efflux properties of Caco-2 cells stably transfected with nuclear receptors[J].Pharm Res, 2006, 23(9):1991-2001. |
[28] |
Agarwal S, Jain R, Pal D,et al. Functional characterization of peptide transporters in MDCKII-MDR1 cell line as a model for oral absorption studies[J]. Int J Pharm, 2007, 332(1-2):147-152. |
[29] |
Xiaokui H, Qi L, Changyuan W, et al. Enhancement effect of P-gp inhibitors on the intestinal absorption and antiproliferative activity of bestatin[J]. Eur J Pharm Sci, 2013, 50(3-4):420-428. |
[30] |
Hellinger E, Bakk ML, Pócza P,et al. Drug penetration model of vinblastine-treated Caco-2 cultures[J]. Eur J Pharmaceut Sci, 2010, 41(1): 96-106. |
[31] |
Brayden DJ, Griffin J. Avermectin transepithelial transport in MDR1- and MRP-transfected canine kidney monolayers[J].Vet Res Commun, 2008, 32(1):93-106. |
[32] |
Darwich AS, Neuhoff S, Jamei M, et al. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "advanced dissolution, absorption, metabolism (ADAM)" model[J]. Curr Drug Metabol,2010,11(9):716-729. |
[33] |
Schmohl M, Schneiderhan-Marra N, Baur N, et al. Characterization of immunologically active drugs in a novel organotypic co-culture model of the human gut and whole blood[J]. Int Immunopharmacol, 2012, 14(4):722-728. |
[34] |
Clayburgh DR, Shen L, Turner JR. A porous defense: the leaky epithelial barrier in intestinal disease[J]. Lab Invest, 2004, 84(3),282-291. |
[35] |
Yasuda M, Furuyashiki T, Nakamura T,et al. Immunomodulatory activity of enzymatically synthesized glycogen and its digested metabolite in a co-culture system consisting of differentiated Caco-2 cells and RAW264.7 macrophages[J].Food Funct, 2013,4(9), 1387-1393. |
[36] |
Leonard F, Collnot EM, Lehr CM. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro[J]. Mol Pharm, 2013, 7(6), 2103-2119. |
[37] |
陈晓清,焦 红,程树军,等.Caco-2细胞与肠道菌共培养初建体外肠道共生模型[J].中山大学学报(医学科学版),2012,33(1):121-126. |
[38] |
Le Hégarat L, Huet S, Fessard V. A co-culture system of human intestinal Caco-2 cells and lymphoblastoid TK6 cells for investigating the genotoxicity of oral compounds[J]. Mutagenesis,2012,27(6):631-636. |