[1] POSTON J T, KOYNER J L. Sepsis associated acute kidney injury[J]. BMJ,2019:k4891. doi:  10.1136/bmj.k4891
[2] UCHINO S, KELLUM J A, BELLOMO R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study[J]. JAMA,2005,294(7):813-818. doi:  10.1001/jama.294.7.813
[3] COCA S G, YUSUF B, SHLIPAK M G, et al. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis[J]. Am J Kidney Dis,2009,53(6):961-973. doi:  10.1053/j.ajkd.2008.11.034
[4] WANG J, RAN Q, ZENG H R, et al. Cellular stress response mechanisms of <italic>Rhizoma Coptidis</italic>: a systematic review[J]. Chin Med,2018,13:27. doi:  10.1186/s13020-018-0184-y
[5] CHOI Y Y, KIM M H, CHO I H, et al. Inhibitory effect of <italic>Coptis chinensis</italic> on inflammation in LPS-induced endotoxemia[J]. J Ethnopharmacol,2013,149(2):506-512. doi:  10.1016/j.jep.2013.07.008
[6] WANG S, XIAO C X, LIU C J, et al. Identification of biomarkers of sepsis-associated acute kidney injury in pediatric patients based on UPLC-QTOF/MS[J]. Inflammation,2020,43(2):629-640. doi:  10.1007/s10753-019-01144-5
[7] BAGSHAW S M, UCHINO S, BELLOMO R, et al. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes[J]. Clin J Am Soc Nephrol,2007,2(3):431-439. doi:  10.2215/CJN.03681106
[8] IZQUIERDO-GARCIA J L, NIN N, CARDINAL-FERNANDEZ P, et al. Identification of novel metabolomic biomarkers in an experimental model of septic acute kidney injury[J]. Am J Physiol Renal Physiol,2019,316(1):F54-F62. doi:  10.1152/ajprenal.00315.2018
[9] WANG J, CHEN Y, YUAN Z M, et al. Differences in effective mechanisms of <italic>Coptidis Rhizoma</italic> and bile processed <italic>Coptidis Rhizoma</italic> on heat syndrome based on urinary metabonomics[J]. China J Chin Mater Med,2016,41(14):2638-2645.
[10] ZHOU Y T, LIAO Q F, LIN M N, et al. Combination of <sup>1</sup>H NMR-and GC-MS-based metabonomics to study on the toxicity of <italic>Coptidis Rhizome</italic> in rats[J]. PLoS One,2014,9(2):e88281. doi:  10.1371/journal.pone.0088281
[11] 黄鑫, 郭力恒, 马世玉, 等. 黄连解毒汤对脓毒症大鼠的心脏保护作用[J]. 中西医结合心脑血管病杂志, 2012(6):710-712. doi:  10.3969/j.issn.1672-1349.2012.06.037
[12] 张玲, 熊维建, 张太君. 黄连碱对慢性肾功能衰竭大鼠的治疗作用及其机制研究[J]. 中国现代应用药学, 2017, 34(1):30-33.
[13] 陆荣华. 代谢组学在肾脏疾病中的应用[J]. 国际泌尿系统杂志, 2012, 32(11):847-852.
[14]

BI W, WANG F G, BI Y, et al. Renal ischemia/reperfusion injury in rats is attenuated by a synthetic glycine derivative[J]. Eur J Pharmacol,2009,616(1-3):256-264. doi:  10.1016/j.ejphar.2009.06.027
[15]

ARORA S, KAUR T, KAUR A, et al. Glycine aggravates ischemia reperfusion-induced acute kidney injury through N-Methyl-D-Aspartate receptor activation in rats[J]. Mol Cell Biochem,2014,393(1-2):123-131. doi:  10.1007/s11010-014-2052-0
[16]

BOIRIE Y, ALBRIGHT R, BIGELOW M, et al. Impairment of phenylalanine conversion to tyrosine in end-stage renal disease causing tyrosine deficiency[J]. Kidney Int,2004,66(2):591-596. doi:  10.1111/j.1523-1755.2004.00778.x
[17]

FAY K T, FORD M L, COOPERSMITH C M. The intestinal microenvironment in sepsis[J]. Biochim Biophys Acta Mol Basis Dis,2017,1863(10 Pt B):2574-2583.
[18]

HE K, HU Y R, MA H, et al. <italic>Rhizoma Coptidis</italic> alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways[J]. Biochim Biophys Acta,2016,1862(9):1696-1709. doi:  10.1016/j.bbadis.2016.06.006
[19]

XU E Y, PERLINA A, VU H, et al. Integrated pathway analysis of rat urine metabolic profiles and kidney transcriptomic profiles to elucidate the systems toxicology of model nephrotoxicants[J]. Chem Res Toxicol,2008,21(8):1548-1561. doi:  10.1021/tx800061w
[20]

GÓMEZ H, KELLUM J A, RONCO C. Metabolic reprogramming and tolerance during sepsis-induced AKI[J]. Nat Rev Nephrol,2017,13(3):143-151. doi:  10.1038/nrneph.2016.186
[21]

WEIS S, CARLOS A R, MOITA M R, et al. Metabolic adaptation establishes disease tolerance to sepsis[J]. Cell,2017,169(7):1263-1275. doi:  10.1016/j.cell.2017.05.031