-
体内药物分析是从药物分析学中衍生而来的一门分支学科。它通过分析生物体体液及各组织器官中药物及其代谢产物浓度,获取药物在生物体内数量和质量的变化、药物代谢方式及途径等信息,为药物研究和临床合理用药提供科学数据[1]。临床药学服务可以提高用药过程的有效性、安全性、经济性[2],在医疗机构的诊断和治疗工作中发挥着重要作用。随着临床上个体化治疗、精准治疗的需求增大,以及分析技术的不断发展,体内药物分析技术广泛地应用于临床药学工作中,成为促进临床合理用药的重要辅助技术之一。本文简要介绍体内药物分析技术在临床药学工作中的应用情况,为促进体内药物分析技术应用于临床工作提供参考。
HTML
[1] | 王秀季, 梅俊, 张立坚, 等. 临床药学专业体内药物分析教学模式探索[J]. 基础医学教育, 2019, 21(6):432-434. |
[2] | AL RAIISI F, STEWART D, FERNANDEZ-LLIMOS F, et al. Clinical pharmacy practice in the care of Chronic Kidney Disease patients: a systematic review[J]. Int J Clin Pharm, 2019, 41(3):630-666. |
[3] | 龚易昕悦, 唐铭擎, 谢静. 阿比朵尔体内药物分析方法研究进展[J]. 计量与测试技术, 2020, 47(9):43-48. |
[4] | SEYFINEJAD B, JOUYBAN A. Overview of therapeutic drug monitoring of immunosuppressive drugs: analytical and clinical practices[J]. J Pharm Biomed Anal, 2021, 205:114315. |
[5] | 陆宇, 朱慧. 抗结核药治疗药物监测临床应用专家共识[J]. 中国防痨杂志, 2021, 43(9):867-873. |
[6] | SEGER C, SHIPKOVA M, CHRISTIANS U, et al. Assuring the proper analytical performance of measurement procedures for immunosuppressive drug concentrations in clinical practice: recommendations of the international association of therapeutic drug monitoring and clinical toxicology immunosuppressive drug scientific committee[J]. Ther Drug Monit, 2016, 38(2):170-189. |
[7] | KITCHEN S, ADCOCK D M, DAUER R, et al. International Council for Standardisation in Haematology (ICSH) recommendations for collection of blood samples for coagulation testing[J]. Int J Lab Hematol, 2021, 43(4):571-580. |
[8] | VAN DONGEN-LASES E C, CORNES M P, GRANKVIST K, et al. Patient identification and tube labelling - a call for harmonisation[J]. Clin Chem Lab Med, 2016, 54(7):1141-1145. |
[9] | 中国中西医结合学会检验医学专业委员会. 临床检验样本转运及保存规范化专家共识[J]. 中华检验医学杂志, 2023, 46(3):259-264. |
[10] | 余史丹, 邬声远, 蓝丽爱, 等. 抗艾滋病药物体内分析方法及药代动力学研究进展[J]. 中南药学, 2018, 16(5):652-660. |
[11] | TUZIMSKI T, PETRUCZYNIK A. Review of chromatographic methods coupled with modern detection techniques applied in the therapeutic drugs monitoring (TDM)[J]. Molecules, 2020, 25(17):4026. |
[12] | YANAGIMACHI N, OBARA N, SAKATA-YANAGIMOTO M, et al. A simple HPLC assay for determining eltrombopag concentration in human serum[J]. Biomed Chromatogr, 2021, 35(5):e5049. |
[13] | SEGER C, SALZMANN L. After another decade: LC-MS/MS became routine in clinical diagnostics[J]. Clin Biochem, 2020, 82:2-11. |
[14] | CHOI R, JEONG B H, KOH W J, et al. Recommendations for optimizing tuberculosis treatment: therapeutic drug monitoring, pharmacogenetics, and nutritional status considerations[J]. Ann Lab Med, 2017, 37(2):97-107. |
[15] | CHRISTIANS U, VINKS A A, LANGMAN L J, et al. Impact of laboratory practices on interlaboratory variability in therapeutic drug monitoring of immunosuppressive drugs[J]. Ther Drug Monit, 2015, 37(6):718-724. |
[16] | DU P, WANG G Y, YANG S, et al. Quantitative HPLC-MS/MS determination of Nuc, the active metabolite of remdesivir, and its pharmacokinetics in rat[J]. Anal Bioanal Chem, 2021, 413(23):5811-5820. |
[17] | 牟玲丽, 李三望, 周瑞, 等. 免疫分析方法在体内药物分析中的应用[J]. 中国药学(英文版), 2015, 24(4):205-216. |
[18] | YANG H Y, HE Q Y, EREMIN S A, et al. Fluorescence polarization immunoassay for rapid determination of dehydroepiandrosterone in human urine[J]. Anal Bioanal Chem, 2021, 413(17):4459-4469. |
[19] | FANG Z J, ZHANG H, GUO J C, et al. Overview of therapeutic drug monitoring and clinical practice[J]. Talanta, 2024, 266(Pt 1): 124996. |
[20] | YANG Z M, QIN Y B, ZHAO D Y, et al. A simple and sensitive LC-MS/MS method for therapeutic drug monitoring of digoxin in children[J]. J Chromatogr B, 2023, 1221:123681. |
[21] | CAMPUZANO S, YÁÑEZ-SEDEÑO P, PINGARRÓN J M. Revisiting electrochemical biosensing in the 21st century society for inflammatory cytokines involved in autoimmune, neurodegenerative, cardiac, viral and cancer diseases[J]. Sensors, 2020, 21(1):189. |
[22] | ATES H C, ROBERTS J A, LIPMAN J, et al. On-site therapeutic drug monitoring[J]. Trends Biotechnol, 2020, 38(11):1262-1277. |
[23] | VERMA N, BHARDWAJ A. Biosensor technology for pesticides: a review[J]. Appl Biochem Biotechnol, 2015, 175(6):3093-3119. |
[24] | RAWSON T M, SHARMA S, GEORGIOU P, et al. Towards a minimally invasive device for beta-lactam monitoring in humans[J]. Electrochem commun, 2017, 82:1-5. |
[25] | RANAMUKHAARACHCHI S A, PADESTE C, DÜBNER M, et al. Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes[J]. Sci Rep, 2016, 6:29075. |
[26] | STRAMBINI L M, LONGO A, SCARANO S, et al. Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid[J]. Biosens Bioelectron, 2015, 66:162-168. |
[27] | ZHAO S S, BUKAR N, TOULOUSE J L, et al. Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples[J]. Biosens Bioelectron, 2015, 64:664-670. |
[28] | BRUCH R, CHATELLE C, KLING A, et al. Clinical on-site monitoring of ß-lactam antibiotics for a personalized antibiotherapy[J]. Sci Rep, 2017, 7(1):3127. |
[29] | TENAGLIA E, FERRETTI A, DECOSTERD L A, et al. Comparison against current standards of a DNA aptamer for the label-free quantification of tobramycin in human sera employed for therapeutic drug monitoring[J]. J Pharm Biomed Anal, 2018, 159:341-347. |
[30] | DAUPHIN-DUCHARME P, YANG K, ARROYO-CURRÁS N, et al. Electrochemical aptamer-based sensors for improved therapeutic drug monitoring and high-precision, feedback-controlled drug delivery[J]. ACS Sens, 2019, 4(10):2832-2837. |
[31] | BEEG M, NOBILI A, ORSINI B, et al. A Surface Plasmon Resonance-based assay to measure serum concentrations of therapeutic antibodies and anti-drug antibodies[J]. Sci Rep, 2019, 9(1):2064. |
[32] | YUKSEL M, LUO W, MCCLOY B, et al. A precise and rapid early pregnancy test: development of a novel and fully automated electrochemical point-of-care biosensor for human urine samples[J]. Talanta, 2023, 254:124156. |
[33] | WU J, LIU H, CHEN W W, et al. Device integration of electrochemical biosensors[J]. Nat Rev Bioeng, 2023, 1(5):346-360. |
[34] | RODRÍGUEZ J, CASTAÑEDA G, MUÑOZ L, et al. Simultaneous determination of erlotinib and metabolites in human urine using capillary electrophoresis[J]. Electrophoresis, 2014, 35(10):1489-1495. |
[35] | BACIU T, BORRULL F, AGUILAR C, et al. Findings in the hair of drug abusers using pressurized liquid extraction and solid-phase extraction coupled in-line with capillary electrophoresis[J]. J Pharm Biomed Anal, 2016, 131:420-428. |
[36] | BACIU T, BORRULL F, NEUSÜß C, et al. Capillary electrophoresis combined in-line with solid-phase extraction using magnetic particles as new adsorbents for the determination of drugs of abuse in human urine[J]. Electrophoresis, 2016, 37(9):1232-1244. |
[37] | 李巧艳, 刘明周, 孙俊, 等. 基于治疗药物监测的癫痫患者不规范用药现象分析和病例报道[J]. 中国合理用药探索, 2021, 18(9):39-43. |
[38] | ROBERTS D M, GALLAPATTHY G, DUNUWILLE A, et al. Pharmacological treatment of cardiac glycoside poisoning[J]. Br J Clin Pharmacol, 2016, 81(3):488-495. |
[39] | 陈文君, 周田彦, 卢炜. 群体药物动力学及其在新药研究中的应用[J]. 药学学报, 2017, 52(3):371-377. |
[40] | 张相林, 缪丽燕, 陈文倩. 治疗药物监测工作规范专家共识(2019版)[J]. 中国医院用药评价与分析, 2019, 19(8):897-898,902. |
[41] | 史群志, 吴戈, 刘芳群, 等. 基于治疗药物监测干预丙戊酸和利福平药物相互作用的案例分析[J]. 中南药学, 2021, 19(12):2685-2687. |
[42] | HIEMKE C, BERGEMANN N, CLEMENT H W, et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017[J]. Pharmacopsychiatry, 2018, 51(1-2):9-62. |
[43] | GIBSON D J, WARD M G, RENTSCH C, et al. Review article: determination of the therapeutic range for therapeutic drug monitoring of adalimumab and infliximab in patients with inflammatory bowel disease[J]. Aliment Pharmacol Ther, 2020, 51(6):612-628. |
[44] | ASHBEE H R, BARNES R A, JOHNSON E M, et al. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology[J]. J Antimicrob Chemother, 2014, 69(5):1162-1176. |
[45] | GASPAR V P, IBRAHIM S, ZAHEDI R P, et al. Utility, promise, and limitations of liquid chromatography-mass spectrometry-based therapeutic drug monitoring in precision medicine[J]. J Mass Spectrom, 2021, 56(11):e4788. |
[46] | MEDELLÍN-GARIBAY S E, CORREA-LÓPEZ T, ROMERO-MÉNDEZ C, et al. Limited sampling strategies to predict the area under the concentration-time curve for rifampicin[J]. Ther Drug Monit, 2014, 36(6):746-751. |
[47] | MAGIS-ESCURRA C, LATER-NIJLAND H M J, ALFFENAAR J W C, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin[J]. Int J Antimicrob Agents, 2014, 44(3):229-234. |
[48] | DARWICH A S, POLASEK T M, ARONSON J K, et al. Model-informed precision dosing: background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy[J]. Annu Rev Pharmacol Toxicol, 2021, 61:225-245. |
[49] | KANTASIRIPITAK W, VAN DAELE R, GIJSEN M, et al. Software tools for model-informed precision dosing: how well do they satisfy the needs?[J]. Front Pharmacol, 2020, 11:620. |
[50] | 刘晓芹, 焦正, 高玉成, 等. 个体化给药辅助决策系统研究与应用进展[J]. 中国药学杂志, 2019, 54(1):1-8. |
[51] | SANKOWSKI B, MICHOROWSKA S, RAĆKOWSKA E, et al. Saliva as blood alternative in therapeutic monitoring of teriflunomide-development and validation of the novel analytical method[J]. Int J Mol Sci, 2022, 23(17):9544. |
[52] | HIEMKE C,BERGEMANN N,CLEMENT H W, 等. 神经精神药理学治疗药物监测共识指南: 2017版[J]. 实用药物与临床, 2022, 25(2): 97-118. |
[53] | HOLFORD N, MA G D, METZ D. TDM is dead. Long live TCI![J]. Br J Clin Pharmacol, 2022, 88(4):1406-1413. |
[54] | 李沭, 张倩, 张爽, 等. 2018年中国医院治疗药物监测开展状况调查[J]. 中国药学杂志, 2019, 54(24):2087-2092. |