[1] |
WEIX X, YINM, ZHANGL, et al. Surface Plasmon Resonance(SPR)biosensor for detection of mycotoxins: a review[J]. JImmunolMeth, 2022, 510:113349. |
[2] |
MULYANTIB, NUGROHOHS, WULANDARIC, et al. SPR-based sensor for the early detection or monitoring of kidney problems[J]. IntJBiomater, 2022, 2022:9135172. |
[3] |
SWAMIS, KAYENATF, WAJIDS. SPR biosensing: cancer diagnosis and biomarkers quantification[J]. MicrochemJ, 2024, 197:109792. |
[4] |
张泽, 张颖聪, 于洪伟, 等. 生物传感器识别元件的种类及其在临床检验中的研究进展[J]. 临床检验杂志, 2020, 38(10):767-771. |
[5] |
JENA S C, SHRIVASTAVA S, SAXENA S, et al. Surface plasmon resonance immunosensor for label-free detection of BIRC5 biomarker in spontaneously occurring canine mammary tumours[J]. Sci Rep, 2019, 9(1):13485. |
[6] |
Widoretno, SJAHRURACHMAN A, DEWI B E, et al. Surface plasmon resonance analysis for detecting non-structural protein 1 of dengue virus in Indonesia[J]. Saudi J Biol Sci, 2020, 27(8):1931-1937. |
[7] |
MIHOC D, LUPU L M, WIEGAND P, et al. Antibody epitope and affinity determination of the myocardial infarction marker myoglobin by SPR-biosensor mass spectrometry[J]. J Am Soc Mass Spectrom, 2021, 32(1):106-113. |
[8] |
WIEGAND P, LUPU L, HÜTTMANN N, et al. Epitope identification and affinity determination of an inhibiting human antibody to interleukin IL8(CXCL8)by SPR- biosensor-mass spectrometry combination[J]. J Am Soc Mass Spectrom, 2020, 31(1):109-116. |
[9] |
LUPU L M, WIEGAND P, HOLDSCHICK D, et al. Identification and affinity determination of protein-antibody and protein-aptamer epitopes by biosensor-mass spectrometry combination[J]. Int J Mol Sci, 2021, 22(23):12832. |
[10] |
CEBALLOS-ALCANTARILLAE, ABAD-FUENTESA, AGULLÓC, et al. Immunochemical method for penthiopyrad detection through thermodynamic and kinetic characterization of monoclonal antibodies[J]. Talanta, 2021, 226:122123. |
[11] |
ACAROZU, DIETRICHR, KNAUERM, et al. Development of a generic enzyme-immunoassay for the detection of fluoro (quinolone)-residues in foodstuffs based on a highly sensitive monoclonal antibody[J]. Food AnalMeth, 2020, 13(3):780-792. |
[12] |
GUOY R, LIUR, LIUY, et al. A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples[J]. Sci Total Environ, 2018, 613-614:783-791. |
[13] |
HERMANN T, PATEL D J. Adaptive recognition by nucleic acid aptamers[J]. Science, 2000, 287(5454):820-825. |
[14] |
ZHENG Y, GENG X H, YANG X H, et al. Exploring interactions of aptamers with Aβ40amyloid aggregates and its application: detection of amyloid aggregates[J]. Anal Chem, 2020, 92(3):2853-2858. |
[15] |
SUN D P, WU Y, CHANG S J, et al. Investigation of the recognition interaction between glycated hemoglobin and its aptamer by using surface plasmon resonance[J]. Talanta, 2021, 222:121466. |
[16] |
MIHAII, VEZEANUA, POLONSCHIIC, et al. Label-free detection of lysozyme in wines using an aptamer based biosensor and SPR detection[J]. SensActuat B Chem, 2015, 206:198-204. |
[17] |
TORRINI F, PALLADINO P, BRITTOLI A, et al. Characterization of troponin T binding aptamers for an innovative enzyme-linked oligonucleotide assay(ELONA)[J]. Anal Bioanal Chem, 2019, 411(29):7709-7716. |
[18] |
TENAGLIA E, FERRETTI A, DECOSTERD L A, et al. Comparison against current standards of a DNA aptamer for the label-free quantification of tobramycin in human sera employed for therapeutic drug monitoring[J]. J Pharm Biomed Anal, 2018, 159:341-347. |
[19] |
LUAN Y X, WANG N, LI C, et al. Advances in the application of aptamer biosensors to the detection of aminoglycoside antibiotics[J]. Antibiotics, 2020, 9(11):787. |
[20] |
DE-LOS-SANTOS-ALVAREZ N, LOBO-CASTAÑÓN M J, MIRANDA-ORDIERES A J, et al. SPR sensing of small molecules with modified RNA aptamers: detection of neomycin B[J]. Biosens Bioelectron, 2009, 24(8):2547-2553. |
[21] |
TARTAGGIA S, MENEGHELLO A, BELLOTTO O, et al. An SPR investigation into the therapeutic drug monitoring of the anticancer drug imatinib with selective aptamers operating in human plasma[J]. Analyst, 2021, 146(5):1714-1724. |
[22] |
SAADM, CASTIELLO F R, FAUCHERS P, et al. Introducing an SPRi-based titration assay using aptamers for the detection of Legionella pneumophila[J]. SensActuat B Chem, 2022, 351:130933. |
[23] |
AHN J Y, LEE K A, LEE M J, et al. Surface plasmon resonance aptamer biosensor for discriminating pathogenic bacteria Vibrio parahaemolyticus[J]. J Nanosci Nanotechnol, 2018, 18(3):1599-1605. |
[24] |
CHEN L X, XU S F, LI J H. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications[J]. Chem Soc Rev, 2011, 40(5):2922-2942. |
[25] |
成琛, 史楠, 姜霄震. 分子印迹光学生物传感器的研究进展[J]. 高校化学工程学报, 2020, 34(3):572-581. |
[26] |
TORRINI F, PALLADINO P, BALDONESCHI V, et al. Sensitive ‘two-steps’ competitive assay for gonadotropin-releasing hormone detection via SPR biosensing and polynorepinephrine-based molecularly imprinted polymer[J]. Anal Chim Acta, 2021, 1161:338481. |
[27] |
OSMAN B, UZUN L, BEŞIRLI N, et al. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(7):3609-3614. |
[28] |
ATAYNO, OSMANB, AKGOLS, et al. Preparation of molecularly imprinted SPR nanosensor for myoglobin detection[J]. CurrApplPolymSci, 2018, 2(2):102-111. |
[29] |
ARCADIOF, ZENIL, PERRIC, et al. Bovine serum albumin protein detection by a removable SPR chip combined with a specific MIP receptor[J]. Chemosensors, 2021, 9(8):218. |
[30] |
REBELOT S C R, COSTA R, BRANDÃOA T S C, et al. Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum[J]. Anal Chim Acta, 2019, 1082:126-135. |
[31] |
TÜRKMEND, BAKHSHPOURM, GÖKTÜRKI, et al. Selective dopamine detection by SPR sensor signal amplification using gold nanoparticles[J]. New JChem, 2021, 45(39):18296-18306. |
[32] |
CENNAMO N, D’AGOSTINO G, PERRI C, et al. Proof of concept for a quick and highly sensitive on-site detection of SARS-CoV-2 by plasmonic optical fibers and molecularly imprinted polymers[J]. Sensors, 2021, 21(5):1681. |
[33] |
YANG H M, TEOH J Y, YIM G H, et al. Label-free analysis of multivalent protein binding using bioresponsive nanogels and surface plasmon resonance(SPR)[J]. ACS Appl Mater Interfaces, 2020, 12(5):5413-5419. |
[34] |
VACHALI P P, LI B X, BARTSCHI A, et al. Surface plasmon resonance(SPR)-based biosensor technology for the quantitative characterization of protein–carotenoid interactions[J]. Arch Biochem Biophys, 2015, 572:66-72. |
[35] |
ZHU Z L, QIU X D, WU S, et al. Blocking effect of demethylzeylasteral on the interaction between human ACE2 protein and SARS-CoV-2 RBD protein discovered using SPR technology[J]. Molecules, 2020, 26(1):57. |
[36] |
ZENGS W, YUX, LAWW C, et al. Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement[J]. SensActuat B Chem, 2013, 176:1128-1133. |
[37] |
PENG J J, LIU G K, YUAN D X, et al. A flow-batch manipulated Ag NPs based SPR sensor for colorimetric detection of copper ions (Cu 2+) in water samples[J]. Talanta, 2017, 167:310-316. |
[38] |
JANANI B, SYEDA, THOMASA M, et al. Enhanced SPR signals based on methylenediphosphonic acid functionalized Ag NPs for the detection of Hg (II) in the presence of an antioxidant glutathione[J]. JMolLiq, 2020, 311:113281. |
[39] |
YUAN H Z, SUN G Y, PENG W, et al. Thymine-functionalized gold nanoparticles (Au NPs) for a highly sensitive fiber-optic surface plasmon resonance mercury ion nanosensor[J]. Nanomaterials, 2021, 11(2):397. |
[40] |
DEYMEHKARE, ALITAHERM, KARAMIC, et al. Synthesis of SPR Nanosensor using Gold Nanoparticles and its Application to Copper(II) Determination[J]. Silicon, 2018, 10(4):1329-1336. |
[41] |
MAURIZ E, GARCÍA-FERNÁNDEZ M C, LECHUGA L M. Towards the design of universal immunosurfaces for SPR-based assays: a review[J]. Trac Trends Anal Chem, 2016, 79:191-198. |