Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Turn off MathJax
Article Contents

XU Lulu, LIU Aijun. Network pharmacological mechanism of Danshen Baizhu prescription on the treatment of coronary heart disease, vascular dementia and idiopathic membranous nephropathy[J]. Journal of Pharmaceutical Practice and Service. doi: 10.12206/j.issn.2097-2024.202312027
Citation: XU Lulu, LIU Aijun. Network pharmacological mechanism of Danshen Baizhu prescription on the treatment of coronary heart disease, vascular dementia and idiopathic membranous nephropathy[J]. Journal of Pharmaceutical Practice and Service. doi: 10.12206/j.issn.2097-2024.202312027

Network pharmacological mechanism of Danshen Baizhu prescription on the treatment of coronary heart disease, vascular dementia and idiopathic membranous nephropathy

doi: 10.12206/j.issn.2097-2024.202312027
  • Received Date: 2023-12-11
  • Rev Recd Date: 2024-03-31
  • Available Online: 2024-12-02
  •   Objective  To investigate the material basis and mechanism of Danshen Baizhu prescription in coronary heart disease, vascular dementia and idiopathic membranous nephropathy based on network pharmacology.   Methods  TCMSP, PubChem, UniProt, GeneCards, OMIM, and DrugBank databases were used to obtain drug and disease targets, and the TCM-compound-drug target network, compound-common target-disease network, and protein-protein interaction map were drawn by STRING database and Cytoscape software, and gene enrichment analysis was performed by Metascape database.   Results  A total of 164 active compounds, 509 potential targets, and 141 common targets were screened out. The main active ingredients are Tanshinone II A, Isorhamnetin, Quercetin, Luteolin, Kampferol, β-sitosterol, Stigmasterol, etc. The key targets are albumin, interleukin 6, Tumor necrosis factor , serine/threonine kinase 1, vascular endothelial growth factor A , mainly enriching in the positive regulation of cell migration, cell viability, protein phosphorylation, response to growth factors, oxidative stress and other biological processes and lipid and atherosclerosis, MAPK, atherosclerosis and fluid shear force, AGE-RAGE, IL-17, PI3K-Akt and other signaling pathways.   Conclusion  The mechanism of action of Danshen Baizhu prescription for coronary heart disease, vascular dementia and idiopathic membranous nephropathy may mainly play a role in multiple targets and pathways such as inhibition of inflammation, inhibition of oxidative stress, and vasodilation.
  • [1] 《心肺血管病杂志》编辑部. 中国心血管健康与疾病报告2019[J]. 心肺血管病杂志, 2020, 39(9):1145-1156. doi:  10.3969/j.issn.1007-5062.2020.09.028
    [2] 胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3):209-220. doi:  10.3969/j.issn.1000-3614.2019.03.001
    [3] 王维治. 神经病学[M]. 2版. 北京: 人民卫生出版社, 2013: 1787.
    [4] JIA L F, DU Y F, CHU L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health, 2020, 5(12):e661-e671. doi:  10.1016/S2468-2667(20)30185-7
    [5] UNCANIN S, DZEMIDZIC J, SERDAREVIC N, et al. Idiopathic membranous nephropathy and treatment related complications[J]. Med Arch, 2020, 74(3):228-232. doi:  10.5455/medarh.2020.74.228-232
    [6] 蒋恬, 胡镜清, 陈党红. “痰瘀互结”的3个致病特征[J]. 中华中医药杂志, 2022, 37(11):6376-6379.
    [7] 胡镜清, 韩晶岩. 痰瘀互结: 基础与临床[M]. 上海: 上海科学技术出版社, 2023.
    [8] RU J L, LI P, WANG J N, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6:13. doi:  10.1186/1758-2946-6-13
    [9] WANG Y L, BRYANT S H, CHENG T J, et al. PubChem BioAssay: 2017 update[J]. Nucleic Acids Res, 2017, 45(D1):D955-D963. doi:  10.1093/nar/gkw1118
    [10] LIU H, WANG J N, ZHOU W, et al. Systems approaches and polypharmacology for drug discovery from herbal medicines: an example using licorice[J]. J Ethnopharmacol, 2013, 146(3):773-793. doi:  10.1016/j.jep.2013.02.004
    [11] LIU X F, OUYANG S S, YU B, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach[J]. Nucleic Acids Res, 2010, 38(Web Server issue): W609-W614.
    [12] WANG X, PAN C X, GONG J Y, et al. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs[J]. J Chem Inf Model, 2016, 56(6):1175-1183. doi:  10.1021/acs.jcim.5b00690
    [13] WANG X, SHEN Y H, WANG S W, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database[J]. Nucleic Acids Res, 2017, 45(W1):W356-W360. doi:  10.1093/nar/gkx374
    [14] CONSORTIUM U. UniProt: a hub for protein information[J]. Nucleic Acids Res, 2015, 43(Database issue): D204-D212.
    [15] REBHAN M, CHALIFA-CASPI V, PRILUSKY J, et al. GeneCards: integrating information about genes, proteins and diseases[J]. Trends Genet, 1997, 13(4):163. doi:  10.1016/S0168-9525(97)01103-7
    [16] AMBERGER J S, BOCCHINI C A, SCHIETTECATTE F, et al. OMIM. org: online Mendelian Inheritance in Man(OMIM®), an online catalog of human genes and genetic disorders[J]. Nucleic Acids Res, 2015, 43(D1):D789-D798. doi:  10.1093/nar/gku1205
    [17] WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5.0: a major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(D1):D1074-D1082. doi:  10.1093/nar/gkx1037
    [18] SZKLARCZYK D, GABLE A L, NASTOU K C, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1):D605-D612. doi:  10.1093/nar/gkaa1074
    [19] LIANG B, LI C N, ZHAO J Y. Identification of key pathways and genes in colorectal cancer using bioinformatics analysis[J]. Med Oncol, 2016, 33(10):111. doi:  10.1007/s12032-016-0829-6
    [20] ZHOU Y Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun, 2019, 10(1):1523. doi:  10.1038/s41467-019-09234-6
    [21] HAN J Y, LI Q, MA Z Z, et al. Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion[J]. Pharmacol Ther, 2017, 177:146-173. doi:  10.1016/j.pharmthera.2017.03.005
    [22] GARCIA-MARTINEZ R, CARACENI P, BERNARDI M, et al. Albumin: pathophysiologic basis of its role in the treatment of cirrhosis and its complications[J]. Hepatology, 2013, 58(5):1836-1846. doi:  10.1002/hep.26338
    [23] ARQUES S. Human serum albumin in cardiovascular diseases[J]. Eur J Intern Med, 2018, 52:8-12. doi:  10.1016/j.ejim.2018.04.014
    [24] VIRDIS A, DELL’AGNELLO U, TADDEI S. Impact of inflammation on vascular disease in hypertension[J]. Maturitas, 2014, 78(3):179-183. doi:  10.1016/j.maturitas.2014.04.012
    [25] HOT A, LENIEF V, MIOSSEC P. Combination of IL-17 and TNFα induces a pro-inflammatory, pro-coagulant and pro-thrombotic phenotype in human endothelial cells[J]. Ann Rheum Dis, 2012, 71(5):768-776. doi:  10.1136/annrheumdis-2011-200468
    [26] CHEN Y L, WU X M, YU S S, et al. Neuroprotective capabilities of Tanshinone IIA against cerebral ischemia/reperfusion injury via anti-apoptotic pathway in rats[J]. Biol Pharm Bull, 2012, 35(2):164-170. doi:  10.1248/bpb.35.164
    [27] SUN S K, YIN Y, YIN X, et al. Anti-nociceptive effects of Tanshinone IIA(TIIA)in a rat model of complete Freund’s adjuvant(CFA)-induced inflammatory pain[J]. Brain Res Bull, 2012, 88(6):581-588. doi:  10.1016/j.brainresbull.2012.06.002
    [28] 于倩, 巫冠中. 木犀草素抗炎机制的研究进展[J]. 药学研究, 2019, 38(2):108-111,119.
    [29] LIN H Y H, CHEN Y, CHEN Y H, et al. Tubular mitochondrial AKT1 is activated during ischemia reperfusion injury and has a critical role in predisposition to chronic kidney disease[J]. Kidney Int, 2021, 99(4):870-884. doi:  10.1016/j.kint.2020.10.038
    [30] BRAILE M, MARCELLA S, CRISTINZIANO L, et al. VEGF-A in cardiomyocytes and heart diseases[J]. Int J Mol Sci, 2020, 21(15):5294. doi:  10.3390/ijms21155294
    [31] CARRANZA K, VERON D, CERCADO A, et al. Cellular and molecular aspects of diabetic nephropathy; the role of VEGF-A[J]. Nefrologia, 2015, 35(2):131-138. doi:  10.1016/j.nefro.2015.05.013
    [32] 孙霁寒. 木犀草素对高脂血症SD大鼠的降脂作用及初步机制研究[C] //营养研究与临床实践——第十四届全国营养科学大会暨第十一届亚太临床营养大会、第二届全球华人营养科学家大会.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(1)

Article Metrics

Article views(1152) PDF downloads(8) Cited by()

Related
Proportional views

Network pharmacological mechanism of Danshen Baizhu prescription on the treatment of coronary heart disease, vascular dementia and idiopathic membranous nephropathy

doi: 10.12206/j.issn.2097-2024.202312027

Abstract:   Objective  To investigate the material basis and mechanism of Danshen Baizhu prescription in coronary heart disease, vascular dementia and idiopathic membranous nephropathy based on network pharmacology.   Methods  TCMSP, PubChem, UniProt, GeneCards, OMIM, and DrugBank databases were used to obtain drug and disease targets, and the TCM-compound-drug target network, compound-common target-disease network, and protein-protein interaction map were drawn by STRING database and Cytoscape software, and gene enrichment analysis was performed by Metascape database.   Results  A total of 164 active compounds, 509 potential targets, and 141 common targets were screened out. The main active ingredients are Tanshinone II A, Isorhamnetin, Quercetin, Luteolin, Kampferol, β-sitosterol, Stigmasterol, etc. The key targets are albumin, interleukin 6, Tumor necrosis factor , serine/threonine kinase 1, vascular endothelial growth factor A , mainly enriching in the positive regulation of cell migration, cell viability, protein phosphorylation, response to growth factors, oxidative stress and other biological processes and lipid and atherosclerosis, MAPK, atherosclerosis and fluid shear force, AGE-RAGE, IL-17, PI3K-Akt and other signaling pathways.   Conclusion  The mechanism of action of Danshen Baizhu prescription for coronary heart disease, vascular dementia and idiopathic membranous nephropathy may mainly play a role in multiple targets and pathways such as inhibition of inflammation, inhibition of oxidative stress, and vasodilation.

XU Lulu, LIU Aijun. Network pharmacological mechanism of Danshen Baizhu prescription on the treatment of coronary heart disease, vascular dementia and idiopathic membranous nephropathy[J]. Journal of Pharmaceutical Practice and Service. doi: 10.12206/j.issn.2097-2024.202312027
Citation: XU Lulu, LIU Aijun. Network pharmacological mechanism of Danshen Baizhu prescription on the treatment of coronary heart disease, vascular dementia and idiopathic membranous nephropathy[J]. Journal of Pharmaceutical Practice and Service. doi: 10.12206/j.issn.2097-2024.202312027
  • 随着人们生活方式的改变,心血管疾病成为全球发病和死亡的重要原因,临床上以冠状动脉粥样硬化性心脏病(CHD,简称冠心病)最为常见,给患者、家庭和社会带来了巨大的负担[1,2]。血管性痴呆(VD)是缺血或出血性脑血管病引起脑组织损伤所致的痴呆类型[3]。最新研究估计,我国60岁以上的痴呆患者约有1507万人,其中VD患者约有392万人[4]。特发性膜性肾病(IMN)是常见的自身免疫性肾小球疾病,该病严重时可引起心、脑等器官障碍。研究显示,IMN患者约有40%可进展为终末期肾病,极大威胁患者生命安全[5]

    冠心病、血管性痴呆、特发性膜性肾病虽属不同系统疾病,但文献研究发现,他们都有痰瘀互结的共同病因病机。冠心病不同阶段病人痰瘀互结的比例超过50%,血管性痴呆和特发性膜性肾病也有近50%,这为三类疾病的异病同治提供了重要的理论基础[6,7]

    异病同治是中医的重要理念,该理念提供了认识疾病的共同规律,帮助找到治疗方向,是辨证识机论治的根本。国医大师朱良春倡导“顽疾必兼痰和瘀”,痰瘀同治重大疾病疗效卓著。项目组前期提出“益气化痰活血、清热散结法”异病同治冠心病、血管性痴呆、特发性膜性肾病的组方用药新方案,根据中药组方规律结合经典方剂,按照“君、臣、佐、使”的原则,组建益气活血化痰、清热散结方-丹参白术方,该方剂从治疗湿热、血瘀、气虚、痰瘀等方面结合中药的用药特性组建,在临床取得了较好的治疗效果。

    网络药理学是以系统生物学为基础,多学科、多领域融合形成的新兴学科。其综合性、系统性、整体性的理念与中药多成分、多靶点、多通路的特点相吻合。本研究基于网络药理学的方法,对丹参白术方治疗冠心病、血管性痴呆、特发性膜性肾病的靶点进行测试,初步探究其可能的物质基础和作用机制,为临床进一步研究提供依据。

    • 丹参白术方由丹参、炒白术、黄芪、虎杖等9味中药组成。本研究依托中药系统药理学分析平台TCMSP[8](http://tcmspw.coni/tcmsp.php)、PubChem[9]数据库(https://pubchem.ncbi.nlm.nih.gov/)进行检索,根据TCMSP数据库中药物动力学(ADME)参数,以口服生物利用度(OB)≥30%,类药性(DL)≥0.18为筛选条件[10],收集并筛选丹参白术方的活性化合物。将获得的活性化合物输入TCMSP、PharmMapper[11-13](http://www. lilab-ecust.cn/pharmmapper/index.html)数据库,PharmMapper数据库中按照“Norm Fit≥0.8”的标准,筛选靶点,获取活性化合物相应的潜在作用靶点。运用UniProt[14]蛋白数据库(https://www.uniprot.org/),限定物种为人(Homo Sapiens),将得到的靶点标准化为基因名称(Gene Symbol),并导入Cytoscape 3.8.2软件,构建“中药-活性化合物-药物靶点”的网络图。

    • 以“coronary heart disease”、“vascular dementia”和“idiopathic membranous nephropathy”作为关键词,搜索GeneCards[15]数据库(https://www.genecards.org/)、OMIM[16]数据库(http://www.omim.org)和DrugBank[17]数据库(https://www.drugbank.ca/)中与冠心病、血管性痴呆和特发性膜性肾病的潜在靶点。选择物种为“Homo sapiens”,在GeneCards数据库中分别以Score≥11.75、Score≥4.584和Score≥5.398为筛选条件。利用在线作图工具Venny 2.1.0(https://bioinfogp.cnb.csic.es/tools/venny/)针对丹参白术方活性化合物的潜在作用靶点与冠心病、血管性痴呆和特发性膜性肾病的靶点绘制韦恩图,所得的交集靶点即为丹参白术方对三种疾病“异病同治”的共有靶点。并将其导入Cytoscape 3.8.2软件,构建“丹参白术方-共有靶点-疾病”(冠心病、血管性痴呆和特发性膜性肾病)网络。

    • 共有靶点导入STRING11.5数据库[18](https://string-db.org/),以intersection score>0.4为筛选标准[19],隐去无关靶标,构建蛋白质相互作用(PPI)网络模型。通过Cytoscape 3.8.2软件中的插件cytoHubba对PPI网络进行分析、筛选获得关键靶点。

    • 将关键靶点导入Metascape数据库[20],参数设置为H species,P<0.01,选取排前20位的条目,并通过在线作图网站微生信(http://www.bioinformatics.com.cn/)进行可视化分析。

    • 选取丹参白术方中的共有核心成分槲皮素和与筛选出的Degree值高的靶点AKT1和ALB进行分子对接,在PubChem数据库(https://pubchem.ncbi.nlm.nih.gov/)获取药物的2D结构信息,采用Schrödinger软件,将2D结构转化为MOL2格式并将其用作配体;同时通过蛋白质结构数据库(PDB)下载受体蛋白的3D结构,使用Schrödinger软件中的Glide模块对小分子和靶蛋白进行高精度(XP)对接,通过对比原配体与活性成分的对接打分值评判丹参白术方的活性成分与该靶点的亲和力。采用PyMol进行可视化展示。

    • 将丹参白术方中的9味中药上传至TCMSP、PubChem数据库搜索到1 121个化合物。按照OB≥30%且DL≥0.18的筛选标准,筛选出177个活性化合物,排除13个未发现相关靶点的化合物,共收集到164个活性化合物。基本信息见附件1。通过TCMSP、PharmMapper、UniProt数据库共获得活性化合物潜在作用靶点509个。通过Cytoscape3.8.2软件,构建“中药-活性化合物-药物靶点”网络,见图1

    • 通过GeneCards、OMIM和DrugBank数据库,按照筛选标准搜集三种疾病的潜在靶点,去重后获得冠心病疾病靶点1 993个,血管性痴呆疾病靶点1 164个,特发性膜性肾病疾病靶点1 098个。将以上3种疾病靶点与丹参白术方509个潜在作用靶点进行交集,最终获得丹参白术方对三种疾病“异病同治”的共有靶点141个,通过Venny 2.1.0,将数据绘制韦恩图,见图2。将共有靶点导入Cytoscape 3.8.2构建“丹参白术方-共有靶点-疾病”网络图,见图3

    • 将以上获得的141个共有靶点输入STRING 11.5数据库,得出共有靶点的蛋白质间相互作用关系,通过平台分析得到节点数141个,边数3 564条,平均节点度值50.6,以intersection score>0.4为筛选标准,将筛选后的信息导入Cytoscape 3.8.2,使用其插件cytoHubba进行分析,cytoHubba提供了11种拓扑学分析方法搜寻关键靶点,我们使用三种算法:连接度(Degree)、最大团体中心性(MCC)、最大邻域分量(MNC),各提取排名前30位的关键靶点,取交集,得到关键共有靶点25个,分别是:ALB、IL6、TNF、AKT1、JUN、CASP3、VEGFA、STAT3、INS、PTGS2、MAPK3、IL1B、TP53、MMP9、HIF1A、CTNNB1、SRC、FOS、MYC、CXCL8、CCND1、EGFR、EGF、HSP90AA1、PPARG,见图4。图形的面积和颜色深浅表示靶点度值的大小,面积越大,颜色越深说明靶点度值越大。

    • 为进一步探究丹参白术方“异病同治”的作用机制,将上述获得的25个关键共有靶点上传至Metascape,进行GO功能分析和KEGG信号通路富集分析。共获得生物过程(BP)817个,细胞组成(CC)30个,分子功能(MF)44个,根据其P值大小,分别列举前10位的条目,具体见图5。KEGG通路富集分析筛选得到142条P<0.01的通路。将P值较小的,富集靶点较多的20条通路,使用在线作图工具微生信进行可视化分析,结果以散点图的形式呈现,具体见图6

    • 应用Schrödinger软件对丹参白术方的主要共有活性成分槲皮素(Quercetin)、β-甾谷醇与核心靶点AKT1和ALB进行分子对接,对接结果见表1。靶蛋白AKT1、ALB与其原配体的对接打分值(Docking score)分别为−10.807 kcal/mol、−7.664 kcal/mol。若活性成分的Docking score值低于或接近原配体则表明该活性成分与该靶点的结合能力较强。其中槲皮素对ALB的Docking score值低于原配体且对AKT1的Docking score值与其原配体接近,表明活性成分槲皮素与关键蛋白受体AKT1与ALB均具有较强的结合稳定性。活性成分β-甾谷醇对ALB的Docking score值与原配体接近,虽然对AKT1的Docking score值相对原配体较低,但小于−6 kcal/mol,也被认为具有良好的结合活性。绘制分子对接模式图见图7

      活性成分 核心靶点 PDB ID 对接分数(kcal/mol)
      槲皮素 AKT1 3O96 −10.332
      β-甾谷醇 AKT1 3O96 −6.755
      槲皮素 ALB 4LB2 −8.049
      β-甾谷醇 ALB 4LB2 −7.358
    • 研究显示,冠心病的发病发展过程中,冠状动脉系统粥样硬化斑块及其微循环障碍是痰瘀互结后病理变化的必然结果。临床研究显示活血化痰法能够保护内皮细胞,降脂抗黏,防治心绞痛发作,多种方药均能通过活血化痰改善疾病发生发展。对于特发性膜性肾病,痰瘀贯穿始终,并且“痰瘀互结沉痼”是形成该病难治性的主要原因。痰瘀同治能够有效控制感染,调节免疫,促进肾小球血流动力学改变,从而改善肾脏功能,延缓病情进展。在血管性痴呆发生发展中,痰瘀也是重要的发病因素,临床以化痰祛瘀方案治疗疗效甚佳[7]。因此,针对痰瘀互结的共同病机异病同治,有望成为中医药临床防治重大疾病的突破口,也是中医传统理论在当代重大疾病诊疗中的价值体现和创新应用。

      丹参白术方以丹参、炒白术为君药,丹参祛瘀、生新、活血,《本草纲目》记载,其活血、通心包络,是活血化瘀的代表药。研究证明,以丹参为君药的中药方剂和有效成分能改善微循环缺血再灌注后引起的心、脑功能障碍和器官损伤[21]。炒白术健脾祛湿,可绝生痰之源。黄芪、虎杖为臣药,黄芪具有抗钙超载,清除氧自由基、改善心功能、保护血管内皮等作用,虎杖是清热解毒、散瘀止痛、止咳化痰的良药。

      通过蛋白互作网络显示关键的共有靶点有:ALB、IL6、TNF、AKT1、VEGFA。ALB是一种69 kDa的蛋白,通常占血浆总蛋白含量的50%以上,起着调节血浆胶体渗透压的作用,并作为载体蛋白,有研究发现,血清ALB水平低与不同类型的心血管疾病有关,包括静脉血栓栓塞、CHD和偶发缺血性心脏病等[22,23]。在该研究的蛋白互作网络中,ALB是程度最高的枢纽基因。

      IL6、TNF是参与多种生理与免疫过程的促炎细胞因子,研究证明,IL-17与TNF-α偶联对IL6的产生具有协同诱导的作用,并对血管具有显著的促凝血和促血栓作用[24,25],而本复方制剂中丹参的有效成分丹参酮ⅡA,木犀草素均有抗凋亡作用,可降低IL6水平[26-28]

      AKT1是AKT家族激酶的重要成员,有研究证实AKT1信号传导可减轻肾脏损伤,保护肾脏功能,并显著改善缺血再灌注损伤后患者的存活率[29]

      VEGFA是血管内皮生长因子家族中最重要的成员,具有调节内皮细胞增殖、抑制凋亡及增强血管通透性等生物作用。在心肌梗死患者血浆中VEGFA表达增加,并与IL6水平正相关,能够刺激炎症斑块的新生血管并诱导其不稳定,是心肌梗死患者预后不良的独立风险因素[30]。在肾脏的发育过程中,足细胞中VEGFA表达水平异常与肾小球疾病的发生有密切关联[31]

      通路富集分析结果显示丹参白术方涉及多个生物学过程、细胞分子和分子功能。其中MAPK信号通路可以通过细胞因子、生长因子、神经递质、激素等外源性刺激信号被激活后参与细胞增殖、细胞分化、细胞凋亡等生理过程。研究发现[32],木犀草素通过激活MAPK信号通路,促进抗氧化酶的表达,同时降低丙二醛(MDA)的水平,减轻机体的脂质过氧化损伤,延缓动脉粥样硬化的发生与发展。PI3K-Akt信号通路参与细胞生长、分化、增殖、凋亡等,在氧化应激和炎症反应方面具有重要作用。分子对接验证结果显示,共有核心成分与核心靶点有良好的结合能力。

      综上所述,本研究通过网络药理学阐述了丹参白术方通过多成分、多靶点、多通路“异病同治”冠心病、血管性痴呆、特发性膜性肾病的药理学作用机制,为进一步的基础和临床研究提供重要的参考依据。

Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return