XIANG Jingjie, ZHONG Yanqiang, LU Yiming, LU Ying. Preparation of DNA-loaded chitosan nanoparticle vaccine[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(1): 19-23,40. doi: 10.3969/j.issn.1006-0111.2016.01.006
Citation:
|
XIANG Jingjie, ZHONG Yanqiang, LU Yiming, LU Ying. Preparation of DNA-loaded chitosan nanoparticle vaccine[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(1): 19-23,40. doi: 10.3969/j.issn.1006-0111.2016.01.006
|
Preparation of DNA-loaded chitosan nanoparticle vaccine
- Received Date: 2015-08-24
- Rev Recd Date:
2015-11-16
-
Abstract
Objective To study and optimize the preparation condition of pVAX1-wapA-loaded nanoparticles and determine the transfection efficiency. Methods The related effects of the crucial factors for the formation of nanoparticles: concentration of chitosan and TPP, pH value, N/P ratio were studied by single-factor experiment, with nanoparticles size and zeta potential as index. Cell transfection test was carried out to indicate that enhancement of cell transfection efficiency of nano-carrier. Results Nanoparticles loaded DNA vaccine were nearly spherical shape with uniform particle size chitosan nanoparticle(CS),(219.2±18.2) nm;quaternary ammonium chitosan nanoparticles(CSTM),(222.5±15.6) nm. Zeta potential of CS and CSTM was (24.7±3.5) mV, (19.6±1.2) mV and encapsulation efficiency was 91.24%, 87.66%,respectively.CSTM nanoparticle could enhance cellular uptake of pVAX1-wapA obviously. Conclusion CSTM nanoparticle was proved to be an efficient DNA vaccine delivery vector.
-
References
[1]
|
樊明文,边 专. 防龋疫苗主动免疫的现状与未来[J]. 中华口腔医学杂志, 2002,37(6):401-403. |
[2]
|
刘善奎,高 申,钟延强,等. DNA 疫苗微球给药系统的研究进展[J]. 中国药学杂志,2004,38(11):828-831. |
[3]
|
白 枫,孙大庆. DNA疫苗递送系统研究进展[J]. 国际免疫学杂志,2008,31(3):236-239. |
[4]
|
李艳红,胡四海. 壳聚糖纳米粒介导基因转染的影响因素及改性修饰[J]. 微生物学免疫学进展,2010,38(3):50-53. |
[5]
|
Erbacher P,Zou S, Bettinger T,et al. Chitosan-based vector/DNA complexes for gene delivery: Biophysical Characteristics and Transfection Ability[J].Pharm Res,1998,15(9):1332-1339. |
[6]
|
Lee M,Nah JW,Kwon Y,et al. Water-soluble and low molecular weight chitosan-based plasmid DNA delivery[J]. Pharm Res,2001,18(4):427-431. |
[7]
|
Ishii T,Okahata Y,Sato T. Mechanism of cell transfection with plasmid/chitosan complexes[J]. Biochim Biophys Acta,2001,1514(1):51-64. |
[8]
|
Huang M,Fong CW,Khor E,et al. Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation[J]. J Control Release,2005,106(3):391-406. |
[9]
|
杨晓容,宗 莉,朱敏艳,等. 荧光探针示踪pDNA/壳聚糖纳米粒在细胞内转运[J].中国药学杂志,2009,43(10):727-731. |
[10]
|
王江峰,鲁 莹,黄景彬,等.聚氨基酯载基因纳米粒的研究[J].第二军医大学学报,2011,32(5):473-476. |
[11]
|
Qian F,Cui F,Ding J,et al. Chitosan graft copolymer nanoparticles for oral protein drug delivery: preparation and characterization[J].Biomacromolecules,2006,7(10):2722-2727. |
[12]
|
刘世伟,孙 逊,聂 宇,等。载基因壳聚糖纳米粒的制备及 其相关性质的初步研究[J].华西药学杂志,2005,19 (6):409-411. |
[13]
|
Mao HQ,Roy K,Troung-Le VL,et al.Chitosan-DNA nano-particles as gene carriers: synthesis, characterization and transfection efficiency [J]. J Control Release,2001,70 (3): 399-421. |
[14]
|
Goldmann K,Ensminger SM,Spriewald BM.Oral gene appli-cation using chitosan-DNA nanoparticles induces transferable tolerance[J].Clin Vaccine Immunol,2012,19 (11):1758-1764. |
-
-
Proportional views
-