Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code

LIU Dan, ZHANG Jundong, LIAN Yunfei, FANG Qiuyu, LI Juan. Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
Citation: LIU Dan, ZHANG Jundong, LIAN Yunfei, FANG Qiuyu, LI Juan. Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003

Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles

doi: 10.3969/j.issn.1006-0111.2018.01.003
  • Received Date: 2017-02-15
  • Rev Recd Date: 2017-12-28
  • Core-shell-type lipid-polymer hybrid nanoparticles(CSLPHNs) are composed by a biodegradable polymeric core coated with single or multiple layers of biomimetic lipids, which combine the benefits of polymeric nanoparticles and liposomes. CSLPHNs have the advantages of small particle size, high drug loading, good biocompatibility and controlled release capability. It has wide applications as a novel drug delivery system. This review gives a brief introduction in characteristics, preparation methods and applications of CSLPHNs, specifically summarizes the developments in the fields of ophthalmic drug delivery, tumor therapy and medical diagnostic imaging.
  • [1] Mandal B, Bhattacharjee H, Mittal N, et al. Core shell-type lipid polymer hybrid nanoparticles as a drug delivery platform[J]. Nanomedicine, 2013, 9(4):474-491.
    [2] Hadinoto K, Sundaresan A, Cheow WS. Lipid polymer hybrid nanoparticles as a new generation therapeutic delivery platform:a review[J].Eur J Pharm Biopharm, 2013, 85(3Pt A):427-443.
    [3] 赵一擎, 刘颖, 冯年平. 脂质聚合物纳米粒的研究进展[J]. 华西药学杂志, 2014, 29(5):602-605.
    [4] 王盈. 载溶酶体的脂质-聚合物杂化纳米粒的制备、表征和胶体稳定性评价[J]. 中国医药工业杂志,2016,47(11):1453.
    [5] Chan JM, Zhang L, Yuet KP, et al. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery[J]. Biomaterials, 2009, 30(8):1627-1634.
    [6] 杨龙, 陈凌云, 魏刚. 眼用脂质纳米制剂的研究进展[J]. 中国医药工业杂志, 2016, 47(12):1592-1599.
    [7] Zhang L, Zhu D, Dong X, et al. Folate-modified lipid-polymer hybrid nanoparticles for targeted paclitaxel delivery[J].Int J Nanomedicine,2015, 10:2101-2114.
    [8] Almeida H, Amaral MH, Lob o P, et al. Applications of poloxamers in ophthalmic pharmaceutical formulations:an overview[J].Expert Opin Drug Deliv, 2013, 10(9):1223-1237.
    [9] Bucolo C, Drago F, Salomone S. Ocular drug delivery:a clue from nanotechnology[J].Front Pharmacol, 2012, 3(3):188.
    [10] 蒋敏, 甘莉, 甘勇, 等. 新型眼用脂质载体制剂的研究进展[J]. 中国药学杂志, 2012, 47(16):1265-1270.
    [11] Diebold Y, Jarrín M, Saez V, et al. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP)[J]. Biomaterials, 2007, 28(8):1553-1564.
    [12] Gan L, Wang J, Zhao Y, et al. Hyaluronan-modified core shell liponanoparticles targeting CD44-positive retinal pigment epithelium cells via intravitreal injection[J]. Biomaterials, 2013, 34(24):5978-5987.
    [13] Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010:a systematic analysis for the Global Burden of Disease Study 2010[J]. Lancet, 2012, 380(9859):2224-2260.
    [14] Krishnamurthy S, Vaiyapuri R, Zhang L, et al. Lipid-coated polymeric nanoparticles for cancer drug delivery[J].Biomater Sci, 2015, 3(7):923-936.
    [15] Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents.[J]. Adv Drug Deliv Rev, 2002, 54(5):675-693.
    [16] Shen Z, Loe DT, Awino JK, et al. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles[J]. Nanoscale, 2016, 8(31):14821-14835.
    [17] Wang F, Chen L, Zhang R, et al. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer[J]. J Control Release, 2014, 196:222-233.
    [18] Shi K, Zhou J, Zhang Q, et al. Arginine-glycine-aspartic acid-modified lipid-polymer hybrid nanoparticles for docetaxel delivery in glioblastoma multiforme[J]. J Biomed Nanotechnol, 2015, 11(3):382-391.
    [19] Zhao Y, Lin D, Wu F, et al. Discovery and in vivo evaluation of novel RGD-modified lipid-polymer hybrid nanoparticles for targeted drug delivery[J]. Int J Mol Sci, 2014, 15(10):17565-17576.
    [20] 张悦, 邢仕歌, 王震, 等. 核酸适配体在靶向药物传递中的研究进展[J]. 生物化学与生物物理进展, 2015, 42(3):236-243.
    [21] Li L, Xiang D, Shigdar S, et al. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells[J]. Int J Nanomedicine, 2014, 9:1083-1096.
    [22] Zhang LJ, Wu B, Zhou W, et al. Two-component reduction-sensitive lipid polymer hybrid nanoparticles for triggered drug release and enhanced in vitro and in vivo anti-tumor efficacy[J]. Biomater Sci, 2016, 5(1):98-110.
    [23] Kong SD, Sartor M, Hu CM, et al. Magnetic field activated lipid polymer hybrid nanoparticles for stimuli-responsive drug release[J]. Acta Biomater, 2013, 9(3):5447-5452.
    [24] Clawson C, Ton L, Aryal S, et al. Synthesis and characterization of lipid-polymer hybrid nanoparticles with pH-triggered poly (ethylene glycol) shedding[J]. Langmuir, 2011, 27(17):10556-10561.
    [25] Yan J, Wang Y, Zhang X, et al. Targeted nanomedicine for prostate cancer therapy:docetaxel and curcumin co-encapsulated lipid polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo[J]. Drug Deliv, 2016, 23(5):1757-1762.
    [26] Zhao X, Li F, Li Y, et al. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer[J]. Biomaterials, 2015, 46:13-25.
    [27] Mieszawska AJ, Gianella A, Cormode DP, et al. Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging[J]. Chem Commun(Camb), 2012, 48(47):5835-5837.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(4394) PDF downloads(577) Cited by()

Related
Proportional views

Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles

doi: 10.3969/j.issn.1006-0111.2018.01.003

Abstract: Core-shell-type lipid-polymer hybrid nanoparticles(CSLPHNs) are composed by a biodegradable polymeric core coated with single or multiple layers of biomimetic lipids, which combine the benefits of polymeric nanoparticles and liposomes. CSLPHNs have the advantages of small particle size, high drug loading, good biocompatibility and controlled release capability. It has wide applications as a novel drug delivery system. This review gives a brief introduction in characteristics, preparation methods and applications of CSLPHNs, specifically summarizes the developments in the fields of ophthalmic drug delivery, tumor therapy and medical diagnostic imaging.

LIU Dan, ZHANG Jundong, LIAN Yunfei, FANG Qiuyu, LI Juan. Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
Citation: LIU Dan, ZHANG Jundong, LIAN Yunfei, FANG Qiuyu, LI Juan. Advances in the studies of core-shell-type lipid-polymer hybrid nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(1): 13-17. doi: 10.3969/j.issn.1006-0111.2018.01.003
Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return