Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code

XU Ziyi, SUN Yuhan, FAN Li, LU Guangzhao, ZHANG Yingnan, ZHANG He. Preparation and cytotoxicity of doxorubicin-containing gold nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(2): 73-77, 81. doi: 10.12206/j.issn.2097-2024.202308043
Citation: JIANG Yanjuan, CUI Lijun, HE Xiaomeng, LIU Na, SHENG Chunquan. The construction of pharmacophore model for (1,3)-β-D-glucan synthase small molecule inhibitors[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(2): 116-120. doi: 10.3969/j.issn.1006-0111.2018.02.005

The construction of pharmacophore model for (1,3)-β-D-glucan synthase small molecule inhibitors

doi: 10.3969/j.issn.1006-0111.2018.02.005
  • Received Date: 2017-08-20
  • Rev Recd Date: 2018-01-19
  • Objective To perform the ligand-based computer-aided drug design and construct the pharmacophore model of (1,3)-β-D-Glucan Synthase (GS) small molecule inhibitors. Method Six small molecules with diverse structures and good inhibitory activity were selected to construct the training set. The HipHop algorithm in Catalyst pharmacophore generation module was utilized to construct the pharmacophore models. The pharmacophore models were evaluated by constructed Decoyset 3D database. Results Pharmacophore 02 has a good enrichment factor, sensitivity and specificity parameters. Pharmacophore model validation with Decoyset 3D database proved that the model has good distinguishing capability. Conclusion The pharmacophore model of GS small molecule inhibitors was constructed and tested. It will provide valuable information for design and discovery of novel small molecule GS inhibitors.
  • [1] Kurtz MB,Douglas CM. Lipopeptide inhibitors of fungal glucan synthase[J]. J Med Vet Mycol,1997,35(2):79-86.
    [2] Onishi J,Meinz M,Thompson J,et al. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors[J]. Antimicrob Agents Chemother,2000,44(2):368-377.
    [3] Castro C, Ribas JC,Valdivieso MH,et al. Papulacandin B resistance in budding and fission yeasts:isolation and characterization of a gene involved in (1,3)beta-D-glucan synthesis in Saccharomyces cerevisiae[J]. J Bacteriol,1995,177(20):5732-5739.
    [4] Taft CS,Enderlin CS,Selitrennikoff CP. A high throughput in vitro assay for fungal (1,3)beta-glucan synthase inhibitors[J]. J Antibiot,1994,47(9):1001-1009.
    [5] Ma CM,Kully M,Khan JK,et al. Synthesis of chlorogenic acid derivatives with promising antifungal activity[J]. Bioorg Med Chem,2007,15(21):6830-6833.
    [6] Ting PC,Kuang R,Wu H,et al. The synthesis and structure-activity relationship of pyridazinones as glucan synthase inhibitors[J]. Bioorg Med Chem Lett,2011,21(6):1819-1822.
    [7] Kuang R,Wu H,Ting PC,et al. The optimization of pyridazinone series of glucan synthase inhibitors[J]. Bioorg Med Chem Lett,2012,22(16):5268-5271.
    [8] Zych AJ,Lam SQ,Jenkins DM,et al. Lead optimization of a sulfonylurea-based piperazine pyridazinone series of glucan synthase inhibitors[J]. Bioorg Med Chem Lett, 2012,22(14):4896-4899.
    [9] Zhou G,Ting PC,Aslanian R,et al. SAR studies of pyridazinone derivatives as novel glucan synthase inhibitors[J]. Bioorg Med Chem Lett,2011,21(10):2890-2893.
    [10] 贺潇蒙. 新型抗真菌先导化合物的设计、合成和活性研究[D]. 上海:第二军医大学,2015.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 90.5 %FULLTEXT: 90.5 %META: 2.4 %META: 2.4 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 47.8 %其他: 47.8 %其他: 0.4 %其他: 0.4 %Central District: 0.2 %Central District: 0.2 %San Jose: 0.1 %San Jose: 0.1 %上海: 3.1 %上海: 3.1 %东莞: 2.3 %东莞: 2.3 %临沂: 0.1 %临沂: 0.1 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %保定: 0.2 %保定: 0.2 %儋州: 0.1 %儋州: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 8.8 %北京: 8.8 %十堰: 0.1 %十堰: 0.1 %南京: 1.3 %南京: 1.3 %南宁: 0.7 %南宁: 0.7 %南昌: 0.1 %南昌: 0.1 %厦门: 0.1 %厦门: 0.1 %古吉拉特: 0.1 %古吉拉特: 0.1 %合肥: 1.4 %合肥: 1.4 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.4 %哈尔滨: 0.4 %唐山: 0.1 %唐山: 0.1 %商丘: 0.1 %商丘: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.4 %大连: 0.4 %天津: 1.2 %天津: 1.2 %太原: 0.5 %太原: 0.5 %威海: 0.1 %威海: 0.1 %宁波: 0.3 %宁波: 0.3 %宜春: 0.2 %宜春: 0.2 %宣城: 0.2 %宣城: 0.2 %宿迁: 0.1 %宿迁: 0.1 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.5 %广州: 1.5 %开封: 0.2 %开封: 0.2 %张家口: 0.1 %张家口: 0.1 %张家界: 0.1 %张家界: 0.1 %徐州: 0.4 %徐州: 0.4 %恩施: 0.1 %恩施: 0.1 %成都: 0.7 %成都: 0.7 %昆明: 0.9 %昆明: 0.9 %晋中: 0.1 %晋中: 0.1 %朝阳: 0.3 %朝阳: 0.3 %本溪: 0.1 %本溪: 0.1 %杭州: 1.3 %杭州: 1.3 %桂林: 0.2 %桂林: 0.2 %武汉: 1.2 %武汉: 1.2 %汕头: 0.1 %汕头: 0.1 %江门: 0.3 %江门: 0.3 %沈阳: 0.5 %沈阳: 0.5 %泰安: 0.1 %泰安: 0.1 %洛阳: 0.5 %洛阳: 0.5 %济南: 0.4 %济南: 0.4 %海口: 0.3 %海口: 0.3 %淮北: 0.1 %淮北: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.8 %深圳: 0.8 %温州: 0.2 %温州: 0.2 %滨州: 0.1 %滨州: 0.1 %潍坊: 0.6 %潍坊: 0.6 %澳门: 0.1 %澳门: 0.1 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.4 %福州: 0.4 %秦皇岛: 0.4 %秦皇岛: 0.4 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 2.3 %芒廷维尤: 2.3 %芜湖: 0.2 %芜湖: 0.2 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %葫芦岛: 0.4 %葫芦岛: 0.4 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.4 %衡水: 0.4 %衡阳: 0.1 %衡阳: 0.1 %西宁: 1.6 %西宁: 1.6 %西安: 0.5 %西安: 0.5 %贵阳: 0.6 %贵阳: 0.6 %达州: 0.1 %达州: 0.1 %运城: 0.4 %运城: 0.4 %通辽: 0.1 %通辽: 0.1 %遵义: 0.2 %遵义: 0.2 %郑州: 0.9 %郑州: 0.9 %重庆: 0.9 %重庆: 0.9 %金华: 0.2 %金华: 0.2 %镇江: 0.2 %镇江: 0.2 %长春: 0.1 %长春: 0.1 %长沙: 4.1 %长沙: 4.1 %青岛: 1.2 %青岛: 1.2 %马鞍山: 0.1 %马鞍山: 0.1 %黄冈: 0.2 %黄冈: 0.2 %黄石: 0.1 %黄石: 0.1 %黔南: 0.3 %黔南: 0.3 %其他其他Central DistrictSan Jose上海东莞临沂丽水乌鲁木齐保定儋州兰州北京十堰南京南宁南昌厦门古吉拉特合肥吉林呼和浩特咸阳哈尔滨唐山商丘大庆大连天津太原威海宁波宜春宣城宿迁常州平顶山广州开封张家口张家界徐州恩施成都昆明晋中朝阳本溪杭州桂林武汉汕头江门沈阳泰安洛阳济南海口淮北淮安深圳温州滨州潍坊澳门石家庄福州秦皇岛绍兴芒廷维尤芜湖芝加哥苏州葫芦岛蚌埠衡水衡阳西宁西安贵阳达州运城通辽遵义郑州重庆金华镇江长春长沙青岛马鞍山黄冈黄石黔南Highcharts.com
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(4667) PDF downloads(764) Cited by()

Related
Proportional views

The construction of pharmacophore model for (1,3)-β-D-glucan synthase small molecule inhibitors

doi: 10.3969/j.issn.1006-0111.2018.02.005

Abstract: Objective To perform the ligand-based computer-aided drug design and construct the pharmacophore model of (1,3)-β-D-Glucan Synthase (GS) small molecule inhibitors. Method Six small molecules with diverse structures and good inhibitory activity were selected to construct the training set. The HipHop algorithm in Catalyst pharmacophore generation module was utilized to construct the pharmacophore models. The pharmacophore models were evaluated by constructed Decoyset 3D database. Results Pharmacophore 02 has a good enrichment factor, sensitivity and specificity parameters. Pharmacophore model validation with Decoyset 3D database proved that the model has good distinguishing capability. Conclusion The pharmacophore model of GS small molecule inhibitors was constructed and tested. It will provide valuable information for design and discovery of novel small molecule GS inhibitors.

XU Ziyi, SUN Yuhan, FAN Li, LU Guangzhao, ZHANG Yingnan, ZHANG He. Preparation and cytotoxicity of doxorubicin-containing gold nanoparticles[J]. Journal of Pharmaceutical Practice and Service, 2024, 42(2): 73-77, 81. doi: 10.12206/j.issn.2097-2024.202308043
Citation: JIANG Yanjuan, CUI Lijun, HE Xiaomeng, LIU Na, SHENG Chunquan. The construction of pharmacophore model for (1,3)-β-D-glucan synthase small molecule inhibitors[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(2): 116-120. doi: 10.3969/j.issn.1006-0111.2018.02.005
Reference (10)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return