大黄的HPLC指纹图谱及禁用农药的残留研究

毛泽玲, 文波

HPLC fingerprint of Radix Rhubarb and forbidden pesticide residues

MAO Zeling, WEN Bo

在线阅读 View online: http://yxsj.smmu.edu.cn/cn/article/doi/10.12206/j.issn.2097-2024.202310057

您可能感兴趣的其他文章

Articles you may be interested in

关注微信公众号, 获得更多资讯信息

· 论著·

大黄的 HPLC 指纹图谱及禁用农药的残留研究

毛泽玲¹, 文 波¹(浙江省桐庐县中医院, 浙江 杭州 311500)(2. 浙江桐君堂中药饮片有限公司, 浙江 杭州 311500)

[摘要] 目的 建立不同种大黄的 HPLC 特征指纹图谱和禁用农药残留检测方法,并综合评价其药材质量。方法 收集 3 种大黄共 20 批,采用高效液相色谱法进行分析,流动相为甲醇-0.1 %磷酸溶液;梯度洗脱;柱温 35 ℃;检测波长 254 nm;流速 1.0 ml/min;并对结果进行聚类分析。采用直接提取法,并建立高效液相色谱-串联质谱法,气相色谱-串联质谱法,对不同来源,产地大黄的 33 种禁用农药进行检测。结果 掌叶大黄、唐古特大黄、药用大黄 3 种来源大黄的指纹图谱与其对照指纹图谱的相似度均>0.95,聚类分析将 20 批大黄样品分为 3 类。不同产地的大黄样品均未检出 33 种禁用农药。结论 3 种大黄药材质量差异较大,建立的 HPLC 指纹图谱和禁用农残的方法稳定、可靠、简便准确,可以为大黄的质量控制评价提供依据。

[关键词] 大黄;指纹图谱;禁用农药残留

[文章编号] 2097-2024(2024)07-0001-09

[DOI] 10.12206/j.issn.2097-2024.202310057

HPLC fingerprint of Radix Rhubarb and forbidden pesticide residues

MAO Zeling¹, WEN Bo¹ (Department of Traditional Chinese Medicine, TCM Hospital of Tonglu County, Hangzhou 311500, China) (2. Zhejiang Tong Jun Tang Chinese Medicine decoction Piece Co., Ltd., Hangzhou 311500, China)

[Abstract] Objective: To establish the HPLC fingerprint and pesticide residue detection methods for different kinds of rhubarb, and to evaluate the quality of rhubarb comprehensively. Methods: 20 batches of three types of rhubarb were collected and analyzed by high-performance liquid chromatography. The mobile phase was methanol-0.1 % phosphoric acid solution; Gradient elution; Column temperature of 35 °C; Detection wavelength of 254 nm; Flow rate 1.0 ml/min; And cluster analysis was performed on the results. Direct extraction method was used and high-performance liquid chromatography-tandem mass spectrometry and gas chromatography-tandem mass spectrometry were established, 33 prohibited pesticides from different sources and origins of rhubarb were detected. Results: The similarity among the fingerprint spectra of three sources of rhubarb, namely *Rheum palmatum* L., *Rheum tanguticum* Maxim.ex Balf., and *Rheum officinale* Bail1., and their control fingerprint spectra was>0.95. 20 batches of rhubarb samples were divided into 3 categories by cluster analysis. No 33 prohibited pesticides was detected in rhubarb samples from different regions. Conclusion: The quality of three kinds of rhubarb was significantly different. The established HPLC fingerprint and the method of banning agricultural residues were stable, reliable, simple and accurate, which could provide a basis for quality control evaluation of rhubarb.

[Key words] rhubarb; fingerprint; forbidden pesticide residues

大黄为蓼科植物掌叶大黄 Rheum palmatum L.、唐 古 特 大 黄 Rheum tanguticum Maxim.ex Balf.或药用大黄 Rheum officinale Bail1.的干燥根和 根茎,用于实热积滞便秘,血热吐衄,目赤咽肿,痈 肿疔疮,肠痈腹痛,瘀血经闭,产后瘀阻,跌打损伤, 湿热痢疾,黄疸尿赤,淋证,水肿;外治烧烫伤^[1]。研 究表明大黄含有蒽醌类,二苯乙烯类,苯丁酮类,多 糖类,有机酸类,鞣质,多酚类等化学成分,具有泻

[基金项目] 杭州市卫生科技计划项目(B20210302)

[作者简介] 毛泽玲, 主管中药师, 研究方向: 中药活性成分及质量标准研究, Tel: 15757165880, Email: 876231359@qq.com

[**通信作者**] 文 波,高级工程师,研究方向:中药质量标准研究, Tel: 18067998908, Email: wenborin@126.com 下、抗衰老、抗肿瘤、防治心血管系统疾病和降血糖等多种药理作用^[2-6]。

大黄主要分布于我国甘肃陇南,临洮,宕县,礼县,武都,华庭,青海海东,玉树,海北,四川阿坝,湖北恩施,重庆奉节等地^[7-8]。近年来,大黄市场需求量逐渐增加,野生药材逐渐枯竭,家种大黄已经成为市场主流商品。由于种植环境,种植技术水平差异较大,导致药材质量参差不齐,建立一套整体、全面的大黄药材质量控制方法尤为重要^[9-12]。

本研究收集 3 种来源的 20 批大黄样品,建立 大黄的 HPLC 指纹图谱并进行方法学考察。建立 大黄中 33 种禁用农药残留方法并进行方法学考 察,为更充分利用大黄药材资源提供实验基础。

1 仪器和材料

1.1 仪器

SHIMADZU 20AT 高效液相色谱仪(日本岛津公司); XS105 万分之一分析天平 [Mettler-Toledo international trading(Shanghai)co., Ltd.]; 电热恒温水浴锅(天津市泰斯特仪器有限公司)。Agilent 1260-6470 QQQ 三重四极杆质谱仪, Agilent 8890-7000D 气相色谱仪-三重串联四极杆质谱仪; LC-SFJ-10 型手持高速匀浆机; GIPP 型水浴氮吹仪; RG-160AT 型离心机; Direct-Q3UV 型超纯水机; XS105 型电子天平; RE-52A 型旋转蒸发仪; Vortex-250OMT 型多管旋涡混合仪; WSZ-200A 型振荡器。

1.2 试药 芦荟大黄素对照品(中国食品药品检定研究

院,批号:110795-202011,纯度:97.5%),大黄素甲醚对照品(中国食品药品检定研究院,批号:110758-201817,纯度:99.2%),大黄酚对照品(中国食品药品检定研究院,批号:110796-201922,纯度:99.4%),大黄素对照品(中国食品药品检定研究院,批号:110756-201913,纯度:96.0%),禁用农药混合对照溶液(中国食品药品检定研究院,批号:610020-202202),甲醇为分析纯(杭州高晶精细化工有限公司);磷酸为分析纯(天津市科密欧化学试剂有限公司);色谱纯乙腈、甲醇(上海星可高纯溶剂有限公司);其余试剂均为分析纯。

1.3 药材来源

20 批大黄药材分别采集于甘肃、青海、四川、湖北,大黄药材经嘉兴东方国药饮片股份有限公司 朱涛副主任药师鉴定为蓼科大黄属植物掌叶大黄、 唐古特大黄和药用大黄的干燥根和根茎,见表 1。

编号	来源	产地	采集时间
			2021年9月
1			,
2	唐古特大黄	青海海东	2021年9月
3	唐古特大黄	青海玉树	2021年9月
4	唐古特大黄	青海玉树	2021年9月
5	唐古特大黄	青海玉树	2021年9月
6	药用大黄	四川绵阳	2021年9月
7	药用大黄	四川绵阳	2021年9月
8	药用大黄	四川阿坝州	2021年9月
9	药用大黄	湖北恩施州	2021年9月
10	药用大黄	四川阿坝州	2021年9月
11	药用大黄	湖北恩施州	2021年9月
12	药用大黄	四川阿坝州	2021年9月
13	掌叶大黄	甘肃陇南	2021年9月
14	掌叶大黄	甘肃陇南	2021年9月
15	掌叶大黄	甘肃陇南	2021年9月
16	掌叶大黄	甘肃宕县	2021年9月
17	掌叶大黄	甘肃宕县	2021年9月
18	掌叶大黄	甘肃礼县	2021年9月
19	掌叶大黄	甘肃礼县	2021年9月
20	掌叶大黄	甘肃礼县	2021年9月

表 1 20 批大黄采集信息表

2 方法与结果

2.1 HPLC 指纹图谱方法学的建立

2.1.1 供试品溶液制备

精密称取大黄粉末 0.5 g(过四号筛), 置具塞锥形瓶中, 精密加入 25 ml 分析纯甲醇, 称定重量, 水

浴加热回流 1 h, 放冷, 用分析纯甲醇补足减失的重量, 过 0.45 μm 微孔滤膜, 取续滤液, 即得。

2.1.2 对照品溶液制备

精密称取芦荟大黄素对照品、大黄素甲醚对照品、大黄酚对照品、大黄素对照品适量,加色谱纯

甲醇制成每 1 ml 含芦荟大黄素、大黄素甲醚、大黄酚、大黄素各 16 μg 的混合溶液,摇匀,备用。

2.1.3 色谱条件

色谱柱: Silversil $C_{18}(4.6 \text{ mm} \times 250 \text{ mm}, 5 \text{ } \mu\text{m})$; 以色谱纯甲醇为流动相 A, 以 0.1% 磷酸溶液为流动相 B, 按照表 2 进行梯度洗脱; 流速为 1.0 ml/min; 检测波长为 254 nm; 柱温为 35%; 进样量为 $10 \text{ } \mu\text{l}$ 。

表 2 梯度洗脱条件

	74 - 11-12/10/10/11	
时间(t/min)	流动相(A)	流动相(B)
0	10	90
5	25	75
45	60	40
60	70	30
70	80	20
90	80	20
90.1	10	90
100.1	10	90

2.1.4 方法学考察

(1)空白试验

吸取分析纯甲醇,在"2.1.3"色谱条件下测定, 未见干扰。

(2)精密度考察

按"2.1.1"项下方法制备编号为 1 的掌叶大黄 供试品溶液, 按"2.1.3"色谱条件, 连续进样 6 次 , 记录液相色谱图, 计算精密度。以 9 号峰(芦荟大 黄素) 为参照峰, 各共有峰保留时间的 RSD 值为 0.02%~0.04%, 峰面积的 RSD 值范围为 0.04%~ 0.73%,均小于2%。表明仪器精密度良好。

(3)稳定性考察

取编号为 1 的掌叶大黄,按"2.1.1"项下方法制备供试品溶液,放置 0、2、4、6、8、10、12 h 并按"2.1.3"色谱条件进样,以 9 号峰(芦荟大黄素)为参照峰,各共有峰保留时间的 RSD 值为 0.02 %~0.04%,峰面积的 RSD 值范围为 0.32 %~1.70%,均小于 2%,表明供试品溶液在 12 h 内稳定性良好。

(4)重复性考察

取编号为 1 的掌叶大黄, 按"2.1.1"项下方法制备 6 份供试品溶液, 按"2.1.3"色谱条件进样测定,以9号峰(芦荟大黄素)为参照峰, 各共有峰相对保留时间的 RSD 值范围为 0.03 %~0.07%, 峰面积的 RSD 值范围为 0.45%~1.54%, RSD 值均小于2%, 表明该方法重复性良好。

2.2 HPLC 指纹图谱结果分析

2.2.1 指纹图谱的相似度评价

取不同来源的大黄样品 20 批(表 1),按"2.1"项下方法制备大黄供试品溶液并进样测定,得到 20 批大黄样品色谱图,图谱显示掌叶大黄、唐古特大黄、药用大黄 3 种来源大黄的液相色谱图差异较大,每个来源大黄的色谱图之间差异较小,将色谱数据导入"中药色谱指纹图谱相似度评价系统 2012 版",共标定 12 个共有特征峰,分别以每个来源样品的色谱图为参照图谱,采用中位数法,时间窗宽度为 0.1,得到 3 种来源大黄的 HPLC 对照图谱,见图 1~图 2。相似度评价结果见表 3~表 5。大黄样品与其对照指纹图谱的相似度均>0.95,说

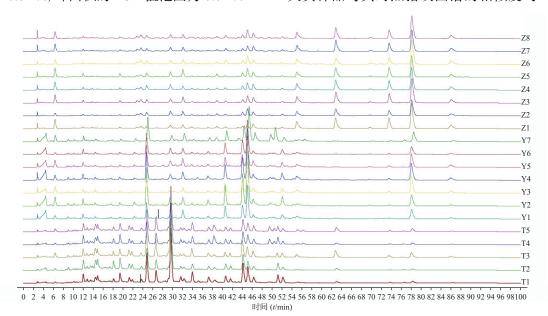


图 1 20 批大黄叠加指纹图谱

T1-T5.唐古特大黄样品; Y1-Y7.药用大黄样品; Z1-Z8.掌叶大黄样品

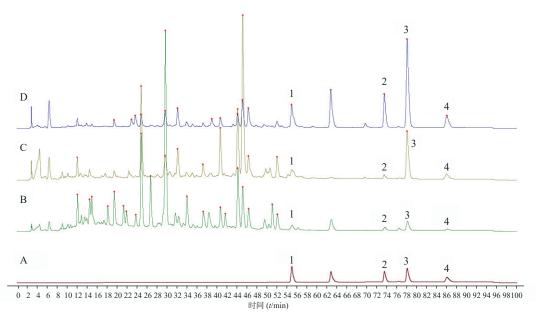


图 2 混合对照品及 3 种基原大黄对照图谱

A.混合对照品; B.唐古特大黄; C.药用大黄; D.掌叶大黄; 1.芦荟大黄素; 2.大黄素; 3.大黄酚; 4.大黄素甲醚

序号	S1	S2	S3	S4	S5	S6	S7	S8	对照
S1	1.000	0.969	0.993	0.989	0.980	0.976	0.995	0.986	0.991
S2	0.969	1.000	0.989	0.993	0.993	0.989	0.986	0.993	0.993
S3	0.993	0.989	1.000	0.997	0.993	0.990	0.998	0.998	0.999
S4	0.989	0.993	0.997	1.000	0.997	0.986	0.996	0.996	0.998
S5	0.980	0.993	0.993	0.997	1.000	0.982	0.989	0.994	0.995
S6	0.976	0.989	0.990	0.986	0.982	1.000	0.989	0.993	0.992
S7	0.995	0.986	0.998	0.996	0.989	0.989	1.000	0.996	0.998
S8	0.986	0.993	0.998	0.996	0.994	0.993	0.996	1.000	0.999
对照	0.991	0.993	0.999	0.998	0.995	0.992	0.998	0.999	1.000

表 3 掌叶大黄相似度结果

表 4 唐古特大黄相似度结果

序号	S1	S2	S3	S4	S5	对照
S1	1.000	0.992	0.987	0.996	0.990	0.996
S2	0.992	1.000	0.992	0.994	0.994	0.997
S3	0.987	0.992	1.000	0.987	0.998	0.996
S4	0.996	0.994	0.987	1.000	0.994	0.997
S5	0.990	0.994	0.998	0.994	1.000	0.998
对照	0.996	0.997	0.996	0.997	0.998	1.000

明同一来源大黄样品的质量比较接近。

2.2.2 共有指纹峰的确定

根据保留时间比对确定共有指纹峰,对 20 批 大黄 HPLC 指纹图谱测定结果进行比较分析,确 定 12 个共有指纹峰。通过与对照品的保留时间比 对,确定大黄图谱 9 号峰为芦荟大黄素, 10 号峰为 大黄素, 11 号峰为大黄酚, 12 号峰为大黄素甲醚。

2.2.3 聚类分析

采用组间联接法,以峰面积为变量,用 SPSS 26.0 软件对 20 批大黄进行聚类分析。由聚类分析树状图可知,20 批不同样品可聚为 3 类,5 批唐古特大黄 S1、S2、S3、S4、S5 聚为一类,药用大黄 S6、S7、S9、S11 聚为一类,药用大黄 S8、S10、S12、掌叶大黄 S13、S14、S15、S16、S17、S18、S19、S20 聚合为一类。聚类分析树状图见图 3。

2.3 禁用农药残留方法的建立

参照《中国药典 2020 年版》四部 2341 农药残留量测定法测定。

2.3.1 检测条件

(1)气相色谱质谱条件

色谱条件:用(50% 苯基)-甲基聚硅氧烷为固定液的弹性石英毛细管柱(柱长 30 m, 膜厚度 $0.25 \mu m$, 柱内径 $0.25 \mu m$)。进样口温度为 $250 \, ^{\circ}$ C,

序号	S1	S2	S3	S4	S5	S6	S7	对照
S1	1.000	0.984	0.964	0.996	0.978	0.992	0.978	0.996
S2	0.984	1.000	0.912	0.980	0.951	0.994	0.977	0.986
S3	0.964	0.912	1.000	0.975	0.977	0.938	0.941	0.964
S4	0.996	0.980	0.975	1.000	0.987	0.990	0.983	0.998
S5	0.978	0.951	0.977	0.987	1.000	0.976	0.984	0.987
S6	0.992	0.994	0.938	0.990	0.976	1.000	0.990	0.996
S7	0.978	0.977	0.941	0.983	0.984	0.990	1.000	0.991
对照	0.996	0.986	0.964	0.998	0.987	0.996	0.991	1.000

表 5 药用大黄相似度结果

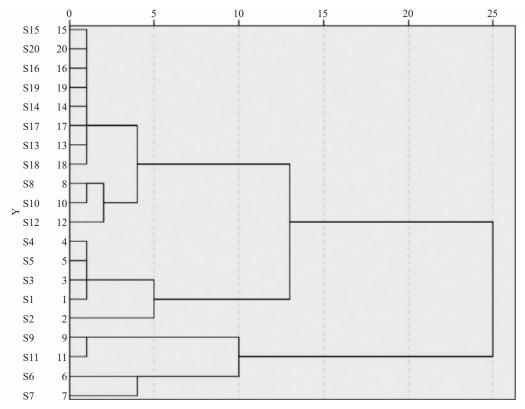


图 3 大黄样品聚类分析树状图

不分流进样。载气为高纯氦气。进样口为恒压模式,柱前压力为 146 kPa。程序升温:设定初始温度为 60 ℃,保持 1 min,以 30 ℃/min 升至 120 ℃,再以 10 ℃/min 升至 160 ℃,再以 2 ℃/min 的速率升温至 230 ℃,最后以 15 ℃/min 升温至 300 ℃,保持 6 min。

质谱条件: 以三重四极杆串联质谱仪检测; 离子源为电子轰击源, 离子源温度 250 ℃。碰撞气为 氮气。质谱传输接口温度 280 ℃。质谱监测模式 为多反应监测。

(2)液相色谱质谱条件

色谱条件: 以十八烷基硅烷键合硅胶为填充剂 (柱长 10 cm, 粒径 2.6 µm, 内径 2.1 mm); 以 0.1 %

甲酸溶液(含 5 mmol/L 甲酸铵)为流动相 A,以乙腈-0.1% 甲酸溶液(含 5 mmol/L 甲酸铵)(95:5)为流动相 B,按下表 6 进行梯度洗脱;流速为 0.3 ml/min,柱温为 40 \mathbb{C} 。

表 6 流动相梯度洗脱程序

时间(t/min)	流动相A(%)	流动相B(%)	
0 ~ 1	70	30	
1 ~ 12	70→0	30→100	
12 ~ 14	0	100	

质谱条件: 以三重四极杆串联质谱仪检测; 离子源为电喷雾离子源, 正离子扫描模式。监测模式为多反应监测。

2.3.2 供试品溶液的制备

(1) 提取

取过三号筛的大黄粉末5g,精密称定,加1g 氯化钠,立即摇散,再加入 50 ml 乙腈,匀浆处理 2 min(转速不低于 12 000r/min), 再至 4 000 r/min 的离心机中离心,取上清液,剩余沉淀再加 50 ml 乙腈, 匀浆处理 1 min, 再离心, 合并两次提取的上 清液,减压浓缩至约 5 ml,用乙腈稀释至 10 ml,摇 匀,即得。

(2)净化

①气相色谱-串联质谱法:量取乙腈:甲苯 (3:1)10 ml 过 SelectCore GCB/NH2-A 固相萃取 柱 (500 mg/500 mg/6 ml)(纳谱分析)活化,溶液弃 去,精密量取"提取"中制备的供试品溶液 2 ml 置 萃取柱上, 待萃取小柱中样品液全部通过, 用 20 ml 乙腈: 甲苯(3:1)洗脱, 收集全部洗脱液, 40 ℃ 以 下减压回收至近干,用乙腈稀释至 2.0 ml,混匀,即 得。②高效液相色谱-串联质谱法:量取上述供试 品溶液 3 ml, 通过亲水亲油平衡材料 SelectCore HLB-B 固相萃取柱(200 mg, 6 ml)(纳谱分析)净 化,收集全部净化液,即得。

2.3.3 对照溶液的制备

(1)混合对照品溶液的制备

取已知浓度的禁用农药混合对照品溶液(已标 示各相关农药品种的浓度),精密量取 1 ml,置 20 ml 容量瓶中,用乙腈稀释至刻度,摇匀,即得。

(2)气相色谱-串联质谱法分析用内标溶液的 制备

精密称取磷酸三苯酯对照品适量,精密称定, 加乙腈溶解并制溶解并制成每 1 ml 含 1.0 mg 的溶 液。精密量取适量,加乙腈制成每 1 ml 含 0.1 μg

的溶液。

(3)空白基质溶液的制备

取不含农残的空白大黄基质样品,同供试品溶 液的制备方法处理,得到空白基质溶液。

(4)基质混合对照溶液的制备

精密量取上述空白基质溶液 1.0 ml(6 份), 置 40 ℃ 水浴氮吹仪上, 氮吹浓缩至约 0.6 ml, 分别加 入混合对照品溶液 10、20、50、100、150、200 μl, 加乙腈稀释至1 ml, 混匀, 即得。

2.3.4 测定法

(1)气相色谱-串联质谱法

分别精密吸取上述的供试品溶液和基质混合 对照溶液各 1 ml, 分别精密加入内标溶液 0.3 ml, 混匀过滤,取续滤液。分别精密吸取上述两种溶液 各 1 µl, 注入仪器, 按内标曲线法计算, 即得。

(2)高效液相色谱-串联质谱法

分别精密吸取上述的基质混合对照溶液和供 试品溶液各 1 ml, 精密加入水 0.3 ml, 混匀过滤, 取 续滤液。分别精密吸取上述两种溶液各 1 µl, 注入 仪器,按外标曲线法计算,即得。

2.3.5 方法学考察

(1)标准曲线

将33种禁用农药的基质混合溶液,按照 "2.3.4"项下方法进行测定,以不同农药的质量浓度 为横坐标,对应的响应值为纵坐标,绘制工作曲 线。结果表明: 33 种禁用农药的质量浓度在线性 范围内与其对应的响应值呈线性关系,线性参数表 见表 7。

(2)回收率和重复性实验

以空白大黄样品6份为基质,分别加入混合对 照品溶液 200 µl 到样品中, 做加标回收试验, 根据

	表 7 线性参数表
测定方法	线性范围(μg/L)
1.6.146.146	5 10 102

农药	测定方法	线性范围(µg/L)	线性回归方程	相关系数
甲胺磷	LC-MS/MS	5.10 ~ 102	Y=5 757.95X-9 518.72	0.999 7
涕灭威亚砜	LC-MS/MS	9.95 ~ 199	<i>Y</i> =4 925.37 <i>X</i> +2 962.42	0.999 2
久效磷	LC-MS/MS	3.00 ~ 60	<i>Y</i> =14 184.41 <i>X</i> -13 024.63	0.999 6
涕灭威砜	LC-MS/MS	10.20 ~ 202	<i>Y</i> =7 266.57 <i>X</i> -25 291.33	0.999 8
3-羟基克百威	LC-MS/MS	5.20 ~ 104	<i>Y</i> =3 651.39 <i>X</i> -9 142.13	0.998 5
硫环磷	LC-MS/MS	3.10 ~ 62	<i>Y</i> =7 354.36 <i>X</i> -5 852.39	0.999 7
苯线磷亚砜	LC-MS/MS	2.05 ~ 41	<i>Y</i> =655.91 <i>X</i> -32.39	0.999 8
磷胺	LC-MS/MS	5.15 ~ 103	<i>Y</i> =3 005.51 <i>X</i> -5 182.82	0.999 0
涕灭威	LC-MS/MS	10.10 ~ 202	<i>Y</i> =11 866.99 <i>X</i> -36 969.07	0.999 6
甲磺隆	LC-MS/MS	4.85 ~ 97	<i>Y</i> =2 297.70 <i>X</i> -1 847.56	0.999 1
苯线磷砜	LC-MS/MS	2.00 ~ 40	<i>Y</i> =1 208.50 <i>X</i> -552.45	0.997 8
克百威	LC-MS/MS	5.05 ~ 101	<i>Y</i> =11 404.76 <i>X</i> -20 949.40	0.998 8

(续表7)

农药	测定方法	线性范围(μg/L)	线性回归方程	相关系数
氯磺隆	LC-MS/MS	5.05 ~ 101	<i>Y</i> =894.56 <i>X</i> -339.12	0.999 7
甲拌磷亚砜	LC-MS/MS	2.05 ~ 41	<i>Y</i> =10 206.115 <i>X</i> -5 030.10	0.999 8
胺苯磺隆	LC-MS/MS	5.00 ~ 100	<i>Y</i> =4 500.82 <i>X</i> -6 147.15	0.998 6
内吸磷	LC-MS/MS	2.10 ~ 42	<i>Y</i> =6 926.58 <i>X</i> -4 823.80	0.999 3
特丁硫磷	LC-MS/MS	2.00 ~ 40	<i>Y</i> =16 908.79 <i>X</i> -7 218.66	0.999 8
甲拌磷砜	LC-MS/MS	1.95 ~ 39	<i>Y</i> =451.97 <i>X</i> -397.40	0.995 4
水胺硫磷	LC-MS/MS	5.05 ~ 101	<i>Y</i> =13 593.18 <i>X</i> -18 646.43	0.9997
苯线磷	LC-MS/MS	2.00 ~ 40	<i>Y</i> =3 783.93 <i>X</i> -1 458.19	0.999 3
灭线磷	LC-MS/MS	2.05 ~ 41	<i>Y</i> =6 444.63 <i>X</i> -3 624.02	0.999 5
特丁硫磷砜	LC-MS/MS	2.10 ~ 42	<i>Y</i> =947.36 <i>X</i> +163.48	0.998 7
氯唑磷	LC-MS/MS	1.00 ~ 20	<i>Y</i> =11 742.40 <i>X</i> -2 819.51	0.999 6
硫线磷	LC-MS/MS	2.00 ~ 40	<i>Y</i> =9 943.19 <i>X</i> -7 358.47	0.999 3
甲基异柳磷	LC-MS/MS	2.10 ~ 42	<i>Y</i> =20 034.52 <i>X</i> -18 536.68	0.999 2
地虫硫磷	LC-MS/MS	2.05 ~ 41	<i>Y</i> =581.22 <i>X</i> -921.56	0.999 5
蝇毒磷	LC-MS/MS	5.05 ~ 101	<i>Y</i> =527.96 <i>X</i> -760.59	0.999 8
治螟磷	LC-MS/MS	2.05 ~ 41	Y=9 943.19X-7 358.47	0.999 3
甲拌磷	LC-MS/MS	2.05 ~ 41	<i>Y</i> =353.64 <i>X</i> -30.70	0.999 2
杀虫脒	LC-MS/MS	2.10 ~ 42	<i>Y</i> =1.947 933 <i>X</i> +0.014 093	0.995 3
α - $\overrightarrow{\wedge}\overrightarrow{\wedge}\overrightarrow{\wedge}$	GC-MS/MS	4.95 ~ 99	<i>Y</i> =4.880 537 <i>X</i> -0.007 851	0.998 8
特丁硫磷	GC-MS/MS	2.10 ~ 42	<i>Y</i> =9.683 112 <i>X</i> -0.016 638	0.996 1
<i>β-</i> 六六六	GC-MS/MS	4.90 ~ 98	<i>Y</i> =4.061 750 <i>X</i> -0.031 009	0.997 1
氟甲腈	GC-MS/MS	2.15 ~ 43	<i>Y</i> =2.987 868 <i>X</i> +0.007 871	0.998 7
<i>γ</i> -六六六	GC-MS/MS	4.70 ~ 94	<i>Y</i> =3.840 197 <i>X</i> +0.053 611	0.997 2
δ - $\overrightarrow{\wedge}\overrightarrow{\wedge}\overrightarrow{\wedge}$	GC-MS/MS	4.75 ~ 95	<i>Y</i> =5.344 570 <i>X</i> -0.013 935	0.998 1
艾氏剂	GC-MS/MS	4.75 ~ 95	<i>Y</i> =1.527 440 <i>X</i> +0.001 431	0.998 8
甲基对硫磷	GC-MS/MS	1.90 ~ 38	<i>Y</i> =3.734 819 <i>X</i> +0.029 243	0.999 5
氟虫腈硫化物	GC-MS/MS	2.00 ~ 40	<i>Y</i> =5.988 870 <i>X</i> +0.002 575	0.997 3
氟虫腈	GC-MS/MS	2.10 ~ 42	Y=3.631 274X-0.019 063	0.998 4
对硫磷	GC-MS/MS	2.00 ~ 40	<i>Y</i> =1.428 485 <i>X</i> -0.010 180	0.999 6
三氯杀螨醇	GC-MS/MS	5.00 ~ 100	Y=9.069 256X-0.030 626	0.998 2
α-硫丹	GC-MS/MS	5.20 ~ 104	Y=0.695 002X+0.006 066	0.999 4
氟虫腈砜	GC-MS/MS	1.95 ~ 39	Y=2.529 407X-0.031 948	0.994 6
4,4'-滴滴伊	GC-MS/MS	4.70 ~ 94	<i>Y</i> =11.689 424 <i>X</i> -0.043 865	0.999 0
狄氏剂	GC-MS/MS	5.15 ~ 103	<i>Y</i> =1.010 844 <i>X</i> -0.010 762	0.999 0
除草醚	GC-MS/MS	5.10 ~ 102	<i>Y</i> =1.658 219 <i>X</i> -0.009 227	0.997 3
2,4'-滴滴涕	GC-MS/MS	4.90 ~ 98	<i>Y</i> =12.444 953 <i>X</i> -0.117 27	0.998 4
4,4'-滴滴滴	GC-MS/MS	4.75 ~ 95	<i>Y</i> =6.152 856 <i>X</i> +0.000 8	0.999 6
β-硫丹	GC-MS/MS	4.90 ~ 98	<i>Y</i> =0.629 329 <i>X</i> -0.002 075	0.998 3
4,4'-滴滴涕	GC-MS/MS	4.75 ~ 95	Y=9.002 096X-0.058 095	0.997 6
硫丹硫酸酯	GC-MS/MS	4.85 ~ 97	<i>Y</i> =0.579 655 <i>X</i> -0.001 658	0.999 7

实际曲线得到的响应值结果与理论值进行计算33 种禁用农药的回收率和回收率的相对标准偏差(RSD)。结果表明:33 种禁用农药的平均回收率为62.1%~101.3%,回收率的RSD为1.12%~

10.26%。结果见表 8。

2.3.6 样品分析

按照以上前处理方法对 20 批大黄样品进行测定,检测结果表明禁用农药均未检出。本研究显示

农药	平均回收率(%)	RSD(%)	农药	平均回收率(%)	RSD(%)
甲胺磷	65.9	1.28	蝇毒磷	65.6	7.45
涕灭威亚砜	77.2	1.93	治螟磷	72.9	3.57
久效磷	76.3	2.02	甲拌磷	64.1	2.63
涕灭威砜	75.6	3.98	杀虫脒	100.8	3.65
3-羟基克百威	76.9	4.55	α - $\overrightarrow{\wedge}\overrightarrow{\wedge}\overrightarrow{\wedge}$	92.3	4.71
硫环磷	73.5	3.09	特丁硫磷	94.0	5.08
苯线磷亚砜	85.1	5.72	β-六六六	95.2	4.83
磷胺	80.2	3.83	氟甲腈	100.9	4.63
涕灭威	73.2	3.03	γ- 六六六	100.2	3.84
甲磺隆	94.4	10.26	δ - $\overrightarrow{\wedge}\overrightarrow{\wedge}\overrightarrow{\wedge}$	92.6	2.21
苯线磷砜	80.7	5.93	艾氏剂	94.4	4.55
克百威	78.1	3.90	甲基对硫磷	99.9	4.53
氯磺隆	96.5	9.18	氟虫腈硫化物	96.6	4.88
甲拌磷亚砜	75.7	4.21	氟虫腈	94.5	4.09
胺苯磺隆	74.2	6.22	对硫磷	92.1	5.10
内吸磷	64.1	4.68	三氯杀螨醇	87.7	2.80
特丁硫磷	74.9	3.43	α-硫丹	95.6	5.37
甲拌磷砜	84.1	2.74	氟虫腈砜	94.7	3.63
水胺硫磷	78.5	4.23	4,4'-滴滴伊	101.2	4.07
苯线磷	69.6	5.98	狄氏剂	99.9	3.66
灭线磷	68.5	4.04	除草醚	94.2	2.33
特丁硫磷砜	80.5	4.76	2,4'-滴滴涕	101.3	4.73
氯唑磷	73.2	4.82	4,4'-滴滴滴	96.9	1.12
硫线磷	62.1	3.13	β-硫丹	94.2	6.55
甲基异柳磷	72.1	4.60	4,4'-滴滴涕	100.9	3.73
地虫硫磷	65.4	6.17	硫丹硫酸酯	97.0	2.57

表 8 大黄农药残留检测中 33 种农药回收率实验

该方法快速、高效和准确,可以作为日常药材监管和检验依据,对大黄中农药残留进行安全评估。

3 讨论

本研究建立了 20 批不同产地不同种源大黄的指纹图谱,采用指纹图谱软件共标定出 12 个共有指纹峰。通过与对照品的色谱峰保留时间比对,4 个色谱峰得到确认。生成 3 种不同来源大黄的指纹图谱,每一类大黄与其对照指纹图谱的相似度均大于 0.95,说明建立的大黄指纹图谱方法具有较好的稳定性和可控性,能为质量评价提供参考依据。通过聚类分析将 20 批大黄分为 3 类,5 批唐古特大黄 S1、S2、S3、S4、S5 聚为一类,药用大黄 S6、S7、S9、S11 聚为一类,药用大黄 S8、S10、S12、掌叶大黄 S13、S14、S15、S16、S17、S18、S19、S20 聚合为一类,表明大黄药材的内在质量与大黄

种属有一定的关联,可能还与产地,海拔,种植环境有关。综上所述,本研究所建立的不同来源大黄指纹图谱准确度高,灵敏度高,专属性强,可以为大黄的质量控制提供可靠依据。同时本研究建立了大黄中33种禁用农药检测方法,结果显示所有大黄样品均未检出禁用农药,风险较小。结果显示,该方法操作简单、重复性好,可用于大黄的禁用农药残留筛查。

【参考文献】

- [1] 国家药典委员会. 中华人民共和国药典: 一部: 2020 年版 [M]. 北京: 中国医药科技出版社, 2020: 24-25.
- [2] INOUE M, SUZUKI R, SAKAGUCHI N, et al. Selective induction of cell death in cancer cells by gallic acid[J]. Biol Pharm Bull, 1995, 18(11): 1526-1530.
- [3] WANG J, LIU S, YIN YC, et al. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell

- apoptosis[J]. Apoptosis, 2015, 20(3): 399-409.
- [4] 邓廷飞, 梁李广. 大黄抗衰老的实验研究 [J]. 中华中医药学刊, 2007, 25(7): 2.
- [5] 何剑华, 宋子贤, 黄彬. 大黄在脑血管病治疗中的作用观察及分析 [J]. 中医临床研究, 2015, 7(22): 18-19.
- [6] 王曜晖, 魏玉, 张冬, 等. 中药大黄对实验性肥胖大鼠的影响 [J]. 现代医药卫生, 2011(06): 804-805.
- [7] 程丽丽,朱南南,孙志蓉.大黄产地变迁及应用情况的调查研究 [C]. 2014 全国生药质量控制技术与资源开发利用交流研讨会, 2014: 115-118.
- [8] 李莉. 不同道地产区大黄资源现状与药材质量特征及其形成机制研究 [D]. 长春: 长春中医药大学, 2014.

- [9] 毛泽玲, 余伟庆, 焦育强. 大黄质量标准的研究进展 [J]. 中国 乡村医药, 2023, 30(1): 72-74.
- [10] 孙冬梅, 罗思妮, 魏梅, 等. 不同基原大黄指纹图谱、多成分定量结合多元统计分析的质量评价研究 [M]. 南京中医药大学学报, 2021.
- [11] 陈斌, 蔡宝昌, 潘扬, 等. 不同产地掌叶大黄 HPLC 指纹图谱 的比较 [J]. 中草药, 2003, 34(5): 457-460.
- [12] 王宁芳. 青海不同产区大黄的 HPLC 指纹图谱的对比研究 [J]. 安徽农业科学, 2014, 42(12): 3477-3478.

[收稿日期] 2023-10-30 [修回日期] 2024-05-06 [本文编辑] 费永和