[1] Mei LT, Choong PFM, Dass CR. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery[J]. Peptides, 2010, 31(1):184.
[2] Park W, Na K. Polyelectrolyte complex of chondroitin sulfate and peptide with lower pI value in poly(lactide-co-glycolide) microsphere for stability and controlled release[J]. Colloids Surf. B Biointerfaces , 2009, 72 (2):193.
[3] Duchêne D, Wouessidjewe D, Ponchel G. Cyclodextrins and carrier systems[J]. J Control Release, 1999, 62(1-2):263.
[4] Challa R, Abuja A, Ali J, et al. Cyclodextrins in drug delivery: an updated review[J]. AAPS Pharmscitech, 2005, 6(2):E329.
[5] Ungaro F, Villa Bianca R, Giovino C, et al. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs[J]. J Control Release, 2009, 135(1):25.
[6] Agüeros M, Areses P, Campanero MA, et al. Bioadhesive properties and biodistribution of cyclodextrin-poly(anhydride) nanoparticles[J]. Eur J Pharm. Sci, 2009, 37(3-4):231.
[7] Agüeros M, Zabaleta V, Espuelas S, et al. Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly(anhydride) nanoparticles[J]. J Control Release, 2010, 145(1):2.
[8] Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery[J]. Int J Pharm, 2006, 325(1-2):147.
[9] Han YD, Tian HY, He P, et al. Insulin nanoparticle preparation and encapsulation into poly(lactic-co-glycolic acid) microspheres by using an anhydrous system[J]. Int J Pharm, 2009, 378(1-2):159.
[10] Builders PF, Kunle OO, Okpaku LC, et al. Preparation and evaluation of mucinated sodium alginate microparticles for oral delivery of insulin[J]. Eur J Pharm Biopharm, 2008, 70(3):777.
[11] Zhang YL, Wei W, Lv PP, et al. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin[J]. Eur J Pharm Biopharm, 2011, 77(1):11.
[12] Sonia TA, Sharma CP. In vitro evaluation of N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan for oral insulin delivery[J]. Carbohydrate Polymers, 2011, 84(1):103.
[13] Pan Y, Xu H, Zhao HY, et al. Study on preparation and oral efficacy of insulin-loaded poly ( lactic-co-glycolic acid)nanoparticles[J] . Acta Pharm Sin (药学学报), 2002, 37(7):374.
[14] Marco W, Wim EH , Wim J . Protein instability in poly(lactic2co2glycolic acid) nanoparticles[J]. Pharm Res, 2000, 17 (10) :1159.
[15] Lehr CM, Bouwstra JA , Kok W, et al. Effects of the mucoadhesive polymer polycarbophil on the intestinal absorption of a peptide drug in the rat[J]. J Pharm Pharmacol, 1992, 44(2):402.
[16] Pimienta C, Chouinard F, Labib A, et al. Effects of various poloxamer coatings on in vitro adhesion of isohexylcyanoacrylate nanospheres to rat ileal segments under liquid flow[J]. Int J Pharm, 1992, 80(1):1.
[17] Pan Y, Zhao HY, Xu H, et al. Effect of experimental parameters on the encapsulation of insulin-loaded poly(lactide2co2glycolide) nanoparticles prepared by a double emulsion method[J]. J Chin Pharm Sci, 2002, 11(1):38.
[18] Lee VH.Peptidase activities in absorptive mucosae[J].Biochem Soc, 1989, 17(3):937.
[19] Jain AK, Chalasani KB, Khar RK, et al. Muco-adhesive multivesicular liposomes as an effective carrier for transmucosal insulin delivery[J]. J Drug Target, 2007, 15(6):417.
[20] 杨天智, 王向涛, 阎雪莹, 等. 胰岛素柔性纳米脂质体的口腔给药研究[J]. 药学学报,2002, 37(11):885.
[21] YIN DF, LU Y, ZHANG H, et al. Preparation of Glucagon-Like Peptide-1 Loaded PLGA Microspheres: Characterizations, Release Studies and Bioactivities in Vitro/in Vivo[J]. Chem Pharm Bull, 2008, 56(2):156.
[22] Joseph J W, Kalitsky J, St-Pierre S, et al. Oral delivery of glucagon-like peptide-1 in modified polymer preparation normalizes basal glycaemia in diabetic bd/bd mice[J]. Diabetologia, 2000, 43(10):1319.
[23] Gao ZH, Tang Y, Chen JQ, et al. A novel DPP-IV-resistant analog of glucagon-like peptide-1 (GLP-1): KGLP-1 alone or in combination with long-acting PLGA microspheres[J]. Peptides, 2009, 30(10):1874.
[24] Sten Madsbad, Professor. Exenatide and liraglutide: different approaches to develop GLP-1 receptor agonists (incretin mimetics)-preclinical and clinical results. Best Practice & Research Clinical Endocrinology & Metabolism, 2009, 23(4):463.
[25] Yang HJ, Park IS, Na K. Biocompatible microspheres based on acetylated polysaccharide prepared from water-in-oil-in-water (W1/O/W2) double-emulsion method for delivery of type II diabetic drug (exenatide)[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2009, 340(1-3):115.
[26] Nguyen HN, Wey SP, Juang JH, et al. The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo[J]. Biomaterials, 2011, 32(10):2673.
[27] Hanato J, Kuriyama K,et al. Liposomal formulations of glucagon-like peptide-1: Improved bioavailability and anti-diabetic effect[J]. Int J Pharm, 2009, 382(1-2):111.
[28] Singh M, Shirley B, Bajwa K, et al. Controlled release of recombinant insulin-like growth factor from a novel formulation of polylactide-co-glycolide microparticles[J]. J Control Release, 2001, 70(1-2):21.
[29] Chen FM, Zhao YM, Wu H, et al. Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran-co-gelatin microspheres[J]. J Control Release, 2006, 114(2):209.
[30] Champa Jayasuriya A.Kibbe S. Rapid biomineralization of chitosan microparticles to apply in bone regeneration[J]. J Mater Sci: Mater Med, 2010, 21(2):393.