[1] Boguszewski CL, Paz-Filho G, Velloso LA. Neuroendocrine body weight regulation:integration between fat tissue, gastrointestinal tract, and the brain[J]. Endokrynol Pol, 2010, 61(2):194-206.
[2] Morton GJ, Cummings DE, Baskin DG, et al. Central nervous system control of food intake and body weight[J]. Nature, 2006, 443(7109):289-295.
[3] Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat[J]. Proc R Soc Lond B Biol Sci, 1953, 140(901):578-596.
[4] Schwartz MW, Woods SC, Porte D, Jr., et al. Central nervous system control of food intake[J]. Nature, 2000, 404(6778):661-671.
[5] Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats[J]. J Comp Physiol Psychol, 1973, 84(3):488-495.
[6] Cowley MA,Smart JL,Rubinstein M,et al.Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus[J].Nature,2001,411(6836):480-484.
[7] Horvath TL. The hardship of obesity:a soft-wired hypothalamus[J]. Nat Neurosci, 2005, 8(5):561-565.
[8] Myers MG, Jr., Munzberg H, Leinninger GM, et al. The geometry of leptin action in the brain:more complicated than a simple ARC[J]. Cell Metab, 2009, 9(2):117-123.
[9] Grill HJ. Distributed neural control of energy balance:contributions from hindbrain and hypothalamus[J]. Obesity (Silver Spring), 2006, 14 Suppl 5:216S-221S.
[10] Grill HJ. Leptin and the systems neuroscience of meal size control[J]. Front Neuroendocrinol, 2010, 31(1):61-78.
[11] Ravinet Trillou C, Delgorge C, Menet C, et al. CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity[J]. Int J Obes Relat Metab Disord, 2004, 28(4):640-648.
[12] Farooqi S, O'Rahilly S. Genetics of obesity in humans[J]. Endocr Rev, 2006, 27(7):710-718.
[13] Niswender KD, Morrison CD, Clegg DJ, et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus:a key mediator of insulin-induced anorexia[J]. Diabetes, 2003, 52(2):227-231.
[14] Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways:insights into insulin action[J]. Nat Rev Mol Cell Biol, 2006, 7(2):85-96.
[15] Ahima RS, Lazar MA. Adipokines and the peripheral and neural control of energy balance[J]. Mol Endocrinol, 2008, 22(5):1023-1031.
[16] Moller DE. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes[J]. Trends Endocrinol Metab, 2000, 11(6):212-217.
[17] Wallenius K, Jansson JO, Wallenius V. The therapeutic potential of interleukin-6 in treating obesity[J]. Expert Opin Biol Ther, 2003, 3(7):1061-1070.
[18] Cummings DE, Overduin J. Gastrointestinal regulation of food intake[J]. J Clin Invest, 2007, 117(1):13-23.
[19] Drucker DJ. The biology of incretin hormones[J]. Cell Metab, 2006, 3(3):153-165.
[20] Wynne K, Park AJ, Small CJ, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects:a double-blind, randomized, controlled trial[J]. Diabetes, 2005, 54(8):2390-2395.
[21] Degen L, Oesch S, Casanova M, et al. Effect of peptide YY3-36 on food intake in humans[J]. Gastroenterology, 2005, 129(5):1430-1436.
[22] Kovacs EM, Lejeune MP, Westerterp-Plantenga MS. The effects of enterostatin intake on food intake and energy expenditure[J]. Br J Nutr, 2003, 90(1):207-214.
[23] Fujimoto K, Fukagawa K, Sakata T, et al. Suppression of food intake by apolipoprotein A-IV is mediated through the central nervous system in rats[J]. J Clin Invest, 1993, 91(4):1830-1833.
[24] Hollander P, Maggs DG, Ruggles JA, et al. Effect of pramlintide on weight in overweight and obese insulin-treated type 2 diabetes patients[J]. Obes Res, 2004, 12(4):661-668.
[25] Obici S, Feng Z, Morgan K, et al. Central administration of oleic acid inhibits glucose production and food intake[J]. Diabetes, 2002, 51(2):271-275.