留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

ZNF24基因过表达慢病毒载体的构建及其在人结直肠癌HCT116细胞中的表达

田硕 厉建中

宋兴爽, 李祺, 杜丽娜. 密闭环境对脑功能影响及其治疗药物[J]. 药学实践与服务, 2023, 41(2): 74-80. doi: 10.12206/j.issn.2097-2024.202208042
引用本文: 田硕, 厉建中. ZNF24基因过表达慢病毒载体的构建及其在人结直肠癌HCT116细胞中的表达[J]. 药学实践与服务, 2023, 41(4): 222-226. doi: 10.12206/j.issn.2097-2024.202204040
SONG Xingshuang, LI Qi, DU Lina. Effect of the insulated environment on brain function and its therapeutical drugs[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(2): 74-80. doi: 10.12206/j.issn.2097-2024.202208042
Citation: TIAN Shuo, LI Jianzhong. Construction and expression of lentiviral vector overexpressing ZNF24 gene in human colorectal cancer HCT116 cell[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(4): 222-226. doi: 10.12206/j.issn.2097-2024.202204040

ZNF24基因过表达慢病毒载体的构建及其在人结直肠癌HCT116细胞中的表达

doi: 10.12206/j.issn.2097-2024.202204040
基金项目: 国家自然科学基金(81570557,30871353)
详细信息
    作者简介:

    田 硕,硕士研究生,Email:605204304@qq.com

    通讯作者: 厉建中,副教授,硕士生导师,研究方向:药物靶点与功能基因研究,Email:466186272@qq.com

Construction and expression of lentiviral vector overexpressing ZNF24 gene in human colorectal cancer HCT116 cell

  • 摘要:   目的  通过构建ZNF24基因过表达慢病毒载体,建立ZNF24基因过表达的人结直肠癌HCT116细胞株,为开展后续研究提供物质基础。  方法  通过PCR扩增ZNF24基因序列片段和3FLAG标签序列片段,并将两产物通过同源重组克隆至慢病毒载体pMT406中,构建成重组表达ZNF24慢病毒质粒pMT-ZNF24。将重组质粒pMT-ZNF24与辅助包装载体质粒pCMV-dR8.9和pCMV-VSV-G一起共转染293T细胞并收集慢病毒。应用孔稀释法检测病毒滴度,用qRT-PCR和蛋白印迹法检测慢病毒转染HCT116细胞后ZNF24的表达水平。  结果  成功构建了重组载体pMT-ZNF24,并获得相应的病毒,病毒滴度为3.25×109 TU/ ml。转染重组ZNF24慢病毒的HCT116细胞中ZNF24表达水平显著高于空白组和阴性对照组细胞。  结论  构建了ZNF24基因过表达慢病毒载体,并获得相应的病毒和稳定表达ZNF24的HCT116细胞株。
  • 清肠栓是由上海市名中医马贵同教授创制的医院制剂。该方基于溃疡性结肠炎“湿热瘀互结肠道”的关键病机,以清热化湿、活血止血立法,在锡类散、青黛散治疗黏膜溃疡的基础上优化筛选而来[1-2]。主要由三七和青黛全粉入药,五倍子和马齿苋经提取后浸膏粉入药,再加入冰片、羊毛脂,以半合成脂肪酸酯为基质制备而成的中药栓剂。

    冰片为一种传统中药,清香宣散,具有开窍醒神,清热败毒的功效。现代药理学研究表明,冰片具有镇静安神、醒脑、促透、抗菌、抗炎等作用[3]。冰片常被用于肛肠外科,可避免药物的首过效应,提高药物有效性。冰片能开放并透过血脑屏障,有助于其他药物通过血脑屏障,促进疗效[4]

    冰片具有挥发性,龙脑常被作为其主要的质量控制指标,含量测定方法主要包括气相色谱法、衍生化高效液相色谱法、薄层色谱法等[5]。2020年版《中国药典》中,采用气相色谱法测定,冰片含龙脑成分不得少于55.0%,樟脑不得超过0.50%[6]。 目前,已有文献对清肠栓中三七皂苷、人参皂苷、没食子酸、靛蓝和靛玉红进行含量测定[7-8],故本实验采用气相色谱法对清肠栓中冰片含量进行测定,并计算龙脑、异龙脑的相对含量,为进一步提高清肠栓的质量控制提供有效依据。

    7820A型气相色谱仪、氢火焰离子化检测(FID)(美Agilent 公司);225D-1CN型电子分析天平、BSA124S型电子分析天平(赛多利斯科学仪器有限公司,精度:十万分之一);S450H型超声波清洗器(德国Elma)。

    清肠栓为院内制剂室提供(批号:210420-210425、211018、211020、211022、211025、190107、190114、190121、190304、190311、190318、190408、190415、190422、190506、190513和200302);樟脑对照品(上海诗丹德标准技术服务有限公司,批号:2814,纯度:95.0%);龙脑对照品(中国食品药品检定研究院,批号:110881-201709,纯度:99.6%);异龙脑对照品(中国食品药品检定研究院,批号:111512-201904,纯度:98.4%);水为超纯水(实验室自制);乙酸乙酯(上海凌峰化学试剂有限公司,分析纯)。

    采用Agilent7890A型气相色谱仪FID检测器;DIKMA DM-Wax聚乙二醇20000(PEG-20M)毛细管色谱柱(30 m×0.25 mm×0.25 µm);进样口温度为250 ℃;检测器(FID)温度为250 ℃;柱温140 ℃;空气流速为450 ml/min,氢气燃气流速为50 ml/min;尾吹气为25 ml/min;分流比为20:1,进样量为1 µl。理论板数按龙脑峰计算应不低于2 000。

    称取樟脑对照品适量,精密称定,加乙酸乙酯溶解,制成每1 ml含樟脑0.1 mg的对照品溶液。另取龙脑、异龙脑对照品适量,精密称定,加乙酸乙酯溶解,制成每1 ml含龙脑0.3 mg、异龙脑0.2 mg的混合对照品溶液。

    取清肠栓(批号:200302)样品10粒,研细,取约60 mg,精密称定,置10 ml量瓶中,加乙酸乙酯8 ml,超声(频率37 kHz,功率800 w)处理30 min,放冷,加乙酸乙酯至刻度,摇匀,滤过,取续滤液,即得。

    按清肠栓制剂处方比例,配制缺冰片的阴性样品,再按供试品溶液制备方法制备,即得。

    2.5.1   专属性试验

    精密吸取樟脑对照品溶液、龙脑和异龙脑对照品溶液、供试品溶液、阴性对照溶液各1 µl,按“2.1”项色谱条件下方法分别进样测定,结果樟脑、异龙脑和龙脑对照品的理论板数分别为88 684、107 331、108 387,远大于规定的2 000。供试品溶液色谱图中,未检出与樟脑对照品溶液保留时间相同的色谱峰,阴性对照溶液色谱图中在与龙脑、异龙脑相同保留时间处无干扰峰,表明该方法专属性良好。色谱图见图1

    图  1  樟脑对照品(A)、龙脑和异龙脑对照品(B)、阴性对照(C)和供试品溶液(D)
    1.樟脑;2龙脑;3异龙脑
    2.5.2   线性关系

    分别精密称取龙脑对照品14.92 mg、异龙脑对照品10.25 mg、樟脑对照品4.83 mg,置同一10 ml量瓶中,加乙酸乙酯溶解并稀释至刻度,摇匀,制成每1 ml含龙脑1.492 mg、异龙脑1.025 mg、樟脑0.483 mg的混合对照品溶液,作为贮备液。

    精密吸取5份贮备液各1 ml,加乙酸乙酯分别稀释50倍、20倍、5倍、2倍、1倍;分别精密吸取5个不同浓度的龙脑、异龙脑、樟脑混合对照品溶液,分别进样1 µl,按按“2.1 色谱条件”项下的方法测定,以进样浓度(X)为横坐标,峰面积(Y)为纵坐标,绘制标准曲线,求得回归方程分别为:Y1=283.4X1+1.320(r=1.000,n=5);Y2=283.5X2+0.8597(r=1.000,n=5);Y3=276.9X3+0.5444(r=1.000,n=5)。线性范围分别为 0.0299~1.497µg、 0.0205~1.025µg、 0.0097~0.4830µg。

    2.5.3   精密度试验

    精密吸取“2.2”项下对照品溶液,按“2.1 ”项的方法测定,重复进样6次,测定峰面积。结果龙脑、异龙脑、樟脑峰面积RSD分别为0.3%、0.4%、0.6%(n=6),表明仪器精密度良好。

    2.5.4   稳定性试验

    精密吸取同一供试品溶液(批号:200302),室温下分别放置0、4、8、12、16、20、24 h,按“2.1 色谱条件”项下的方法测定,记录峰面积。结果樟脑未检出,龙脑与异龙脑峰面积的RSD分别为1.6%和1.5%,表明供试品溶液在室温下放置24h稳定。

    2.5.5   重复性试验

    精密称取清肠栓样品粉末60 mg(批号:200302),精密称定,平行称取6份,按“2.3供试品溶液的制备”项下制备供试品溶液,按“2.1”项方法测定,结果均未检出樟脑,龙脑和异龙脑平均含量的RSD分别为0.8%和1.1%(n=6),表明该方法的重复性良好。

    2.5.6   加样回收率试验

    称取清肠栓样品粉末30 mg(批号:200302),精密称定,平行称取6份,分别精密加入龙脑、异龙脑、樟脑对照品溶液,按“2.3” 项方法制备供试品溶液,按“2.1”项方法测定,记录峰面积,并计算加样回收率。结果见表1

    表  1  龙脑回收率试验(n=6)
    成分 原有量(mg) 加入量
    (mg)
    测得量
    (mg)
    回收率
    (%)
    平均回收率
    (%)
    RSD
    (%)
    龙脑 0.47 0.50 0.97 100.8 101.0 0.51
    0.48 0.50 0.98 101.6
    0.47 0.50 0.97 101.2
    0.47 0.50 0.97 100.8
    0.47 0.50 0.97 100.2
    0.47 0.50 0.97 101.4
    异龙脑 0.28 0.29 0.58 102.8 102.5 1.66
    0.28 0.29 0.59 104.5
    0.28 0.29 0.58 104.2
    0.28 0.29 0.57 100.4
    0.28 0.29 0.58 102.1
    0.28 0.29 0.57 100.8
    樟脑 0.00 0.13 0.12 97.06 99.69 3.77
    0.00 0.13 0.12 93.91
    0.00 0.13 0.13 102.6
    0.00 0.13 0.13 99.43
    0.00 0.13 0.13 104.2
    0.00 0.13 0.13 101.0
    下载: 导出CSV 
    | 显示表格

    取清肠栓制剂2019、2021年共20个批次的样品,按“2.3”项方法制备供试品溶液,再按“2.1”项方法测定,20个批次均未检出樟脑。样品中龙脑和异龙脑含量见表2(表中1~10为2019年样品,11~20为2021年样品)。

    表  2  清肠栓样品含量实验
    样品序号龙脑(mg/g)异龙脑(mg/g)冰片(mg/g)
    114.238.50922.74
    214.198.56422.76
    314.388.66523.05
    414.268.56922.83
    514.288.51122.79
    614.218.57122.78
    714.248.44622.68
    814.418.63223.04
    914.138.32922.46
    1013.898.40122.29
    1118.7611.3530.11
    1218.6011.2029.80
    1318.9311.3930.32
    1419.0311.3730.40
    1518.6511.2629.91
    1618.8211.3830.19
    1718.8911.3530.24
    1818.7411.2830.02
    1918.9411.3530.29
    2018.8811.3930.27
    下载: 导出CSV 
    | 显示表格

    乙酸乙酯对冰片具有较好的溶解性,并且样品中其他干扰成分的溶出较少,故选择其作为提取溶剂。本实验考察了不同提取时间(15 min、30 min、45 min)对样品提取效果的影响,观察比较不同条件处理后供试品溶液色谱情况,根据含量结果选择提取时间为30 min。最终以乙酸乙酯为提取溶剂,超声处理30 min作为供试品制备时的提取方式。

    柱温的选择:由于2020年版《中国药典》中冰片含量测定选择的注温为140 ℃,而查阅文献,部分实验者选择的柱温为160 ℃[9],因此,我们分别选择140 ℃和160 ℃进行试验,根据出峰时间及峰形比较,最终选择140 ℃作为实验条件。色谱柱的选择:实验研究使用的两种色谱柱分别为DIKMA DM-Wax(PEG-20M)毛细管色谱柱(30 m×0.25 mm,0.25 µm);Agilent HP-INNOWAX(PEG-20M)毛细管色谱柱(30 m×0.25 mm,0.25 µm),比较两种色谱柱的塔板数,实验显示色谱峰分离度良好,说明色谱柱对样品的测定结果影响较小,此方法具有普遍性,故最终选择本实验室常用的DIKMA DM-Wax色谱柱。樟脑检出限和定量限确定:检测限及定量限采用信噪比法确认,当信噪比(S/N)为3∶1时,樟脑检出限为1.4 μg/g;当信噪比(S/N)为10∶1时,其定量限为4.6 μg/g。

    2020年版《中国药典》中,冰片的描述为冰片(合成龙脑),其中对樟脑的检测要求为不得超过0.50%。本次实验,通过查阅文献,参考其它含冰片制剂中对樟脑残留的检测方法[10],对清肠栓样品进行樟脑含量测定,发现成品栓剂中均未检测到樟脑,证明我院制剂室所用冰片符合药典的相关规定。

    2020年版《中国药典》是以龙脑作为冰片的含量测定指标,但通过查阅文献可知,近年对冰片的含量测定中,多以龙脑与异龙脑总量来计算冰片的含量,[11-14]。考虑到本次实验是完善清肠栓的内控标准,提高制剂的稳定性,故本实验以龙脑和异龙脑的总量来计算冰片的含量。

    综上所述,本方法为冰片中龙脑、异龙脑的含量测定和樟脑限度检查制定提供参考,操作简单、重复性良好、结果准确,可用于清肠栓中冰片的质量控制。

  • 图  1  目的基因PCR扩增产物电泳结果

    a. PCR扩增产物ZNF24;b. PCR扩增产物3FLAG;M. DNA Marker

    图  2  载体pMT406线性化

    载体片段.载体pMT406经BamHI和XhoI双酶切产物;Marker.DNA Marker

    图  3  重组慢病毒载体pMT-ZNF24菌落PCR鉴定

    1~4.重组慢病毒载体pMT-ZNF24阳性克隆PCR产物条带;M.DNA Marker

    图  4  荧光显微镜下观察转染ZNF24、ZNF24-NC慢病毒的HCT116细胞 ×100

    GFP.荧光检测各组细胞;白光视野.明场观察各组细胞

    图  5  HCT116细胞中ZNF24 mRNA相对表达水平

    **P<0.01,与空白对照组和阴性对照组比较

    图  6  HCT116细胞中ZNF24蛋白表达水平

    *P<0.05,与空白对照组和阴性对照组比较

    表  1  ZNF24基因、3FLAG的特异性引物序列以及相关引物序列

    片段名称序列
    Primer 1TGGCAAAGAATTGGATCCGCC
    ACCATGTCTGCACAGTCAGTGGAAG
    Primer 2AACTTTCACAACATTCAGAAGTTTT
    Primer 3CTGAATGTTGTGAAAGTTGACTACAAGGATGA
    Primer 4CATAATACTAGTCTCGAGTTATTTGTCGTCATCATC
    Primer 5CGGCTCTAGAGCCTCTGCTA
    Primer 6CGTGAGTCAAACCGCTATCCAC
    下载: 导出CSV
  • [1] 厉建中, 陈霞, 王水良, 等. 小鼠锌指蛋白基因ZF-12的克隆与基因结构以及5ʼ端启动子活性的分析[J]. 遗传学报, 2003, 30(4):311-316.
    [2] 赵靖凯, 王聪, 张籍鹏, 等. GST-pulldown验证转录因子ZNF24与c-Myc的相互作用[J]. 生物技术通讯, 2014, 25(6):765-769. doi:  10.3969/j.issn.1009-0002.2014.06.003
    [3] JIA D, HUANG L, BISCHOFF J, et al. The endogenous zinc finger transcription factor, ZNF24, modulates the angiogenic potential of human microvascular endothelial cells[J]. FASEB J,2015,29(4):1371-1382. doi:  10.1096/fj.14-258947
    [4] 王晓鹏, 李梦文, 厉建中, 等. 转录因子ZNF191腺病毒表达载体的构建及鉴定[J]. 重庆医科大学学报, 2011, 36(10):1215-1217. doi:  10.3969/j.issn.0253-3626.2011.10.018
    [5] HAN Z G, ZHANG Q H, YE M, et al. Molecular cloning of six novel Krüppel-like zinc finger genes from hematopoietic cells and identification of a novel transregulatory domain KRNB[J]. J Biol Chem,1999,274(50):35741-35748. doi:  10.1074/jbc.274.50.35741
    [6] RICHARD F, PACYNA-GENGELBACH M, SCHLÜNS K, et al. Patterns of chromosomal imbalances in invasive breast cancer[J]. Int J Cancer,2000,89(3):305-310. doi:  10.1002/1097-0215(20000520)89:3<305::AID-IJC15>3.0.CO;2-8
    [7] KERN S E, FEARON E R, TERSMETTE K W, et al. Clinical and pathological associations with allelic loss in colorectal carcinoma[corrected[J]. JAMA,1989,261(21):3099-3103. doi:  10.1001/jama.1989.03420210047014
    [8] LIU G Y, JIANG S M, WANG C J, et al. Zinc finger transcription factor 191, directly binding to β-catenin promoter, promotes cell proliferation of hepatocellular carcinoma[J]. Hepatology,2012,55(6):1830-1839. doi:  10.1002/hep.25564
    [9] LIU Y F, CHENG H H, CHENG C C, et al. ZNF191 alters DNA methylation and activates the PI3K-AKT pathway in hepatoma cells via transcriptional regulation of DNMT1[J]. Cancer Med,2022,11(5):1269-1280. doi:  10.1002/cam4.4535
    [10] WU D, LIU G Y, LIU Y F, et al. Zinc finger protein 191 inhibits hepatocellular carcinoma metastasis through discs large 1-mediated yes-associated protein inactivation[J]. Hepatology,2016,64(4):1148-1162. doi:  10.1002/hep.28708
    [11] HUANG X J, LIU N X, XIONG X. ZNF24 is upregulated in prostate cancer and facilitates the epithelial-to-mesenchymal transition through the regulation of Twist1[J]. Oncol Lett,2020,19(5):3593-3601.
    [12] XIONG J, JIANG P P, ZHONG L, et al. The novel tumor suppressor gene ZNF24 induces THCA cells senescence by regulating Wnt signaling pathway, resulting in inhibition of THCA tumorigenesis and invasion[J]. Front Oncol,2021,11:646511. doi:  10.3389/fonc.2021.646511
    [13] HOU L M, CHEN M S, YANG H W, et al. miR-940 inhibited cell growth and migration in triple-negative breast cancer[J]. Med Sci Monit,2016,22:3666-3672. doi:  10.12659/MSM.897731
    [14] LIU X Y, GE X X, ZHANG Z, et al. microRNA-940 promotes tumor cell invasion and metastasis by downregulating ZNF24 in gastric cancer[J]. Oncotarget,2015,6(28):25418-25428. doi:  10.18632/oncotarget.4456
    [15] 张子怡, 林泉任, 叶春雨, 等. 结肠癌干细胞标志物和信号通路的研究进展[J]. 生命科学, 2019, 31(8):802-811. doi:  10.13376/j.cbls/2019098
    [16] MASSAI L, CIRRI D, MARZO T, et al. Auranofin and its analogs as prospective agents for the treatment of colorectal cancer[J]. Cancer Drug Resist,2022,5(1):1-14.
    [17] FAKIH M G. Metastatic colorectal cancer: current state and future directions[J]. J Clin Oncol,2015,33(16):1809-1824. doi:  10.1200/JCO.2014.59.7633
    [18] MOHASSAB A M, HASSAN H A, ABDELHAMID D, et al. STAT3 transcription factor as target for anti-cancer therapy[J]. Pharmacol Rep,2020,72(5):1101-1124. doi:  10.1007/s43440-020-00156-5
    [19] JIA D, HASSO S M, CHAN J, et al. Transcriptional repression of VEGF by ZNF24: mechanistic studies and vascular consequences in vivo[J]. Blood,2013,121(4):707-715. doi:  10.1182/blood-2012-05-433045
  • [1] 周娇, 郑建雨, 王思真, 杨峰.  mRNA肿瘤疫苗非病毒递送系统研究进展 . 药学实践与服务, 2025, 43(3): 109-116. doi: 10.12206/j.issn.2097-2024.202410034
    [2] 白学鑫, 陈玉平, 盛春泉, 武善超.  具核梭杆菌小分子抑制剂的筛选及其抗结直肠癌活性研究 . 药学实践与服务, 2024, 42(12): 503-507. doi: 10.12206/j.issn.2097-2024.202405009
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  4665
  • HTML全文浏览量:  5686
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-10
  • 修回日期:  2022-09-05
  • 网络出版日期:  2023-07-14
  • 刊出日期:  2023-04-25

ZNF24基因过表达慢病毒载体的构建及其在人结直肠癌HCT116细胞中的表达

doi: 10.12206/j.issn.2097-2024.202204040
    基金项目:  国家自然科学基金(81570557,30871353)
    作者简介:

    田 硕,硕士研究生,Email:605204304@qq.com

    通讯作者: 厉建中,副教授,硕士生导师,研究方向:药物靶点与功能基因研究,Email:466186272@qq.com

摘要:   目的  通过构建ZNF24基因过表达慢病毒载体,建立ZNF24基因过表达的人结直肠癌HCT116细胞株,为开展后续研究提供物质基础。  方法  通过PCR扩增ZNF24基因序列片段和3FLAG标签序列片段,并将两产物通过同源重组克隆至慢病毒载体pMT406中,构建成重组表达ZNF24慢病毒质粒pMT-ZNF24。将重组质粒pMT-ZNF24与辅助包装载体质粒pCMV-dR8.9和pCMV-VSV-G一起共转染293T细胞并收集慢病毒。应用孔稀释法检测病毒滴度,用qRT-PCR和蛋白印迹法检测慢病毒转染HCT116细胞后ZNF24的表达水平。  结果  成功构建了重组载体pMT-ZNF24,并获得相应的病毒,病毒滴度为3.25×109 TU/ ml。转染重组ZNF24慢病毒的HCT116细胞中ZNF24表达水平显著高于空白组和阴性对照组细胞。  结论  构建了ZNF24基因过表达慢病毒载体,并获得相应的病毒和稳定表达ZNF24的HCT116细胞株。

English Abstract

宋兴爽, 李祺, 杜丽娜. 密闭环境对脑功能影响及其治疗药物[J]. 药学实践与服务, 2023, 41(2): 74-80. doi: 10.12206/j.issn.2097-2024.202208042
引用本文: 田硕, 厉建中. ZNF24基因过表达慢病毒载体的构建及其在人结直肠癌HCT116细胞中的表达[J]. 药学实践与服务, 2023, 41(4): 222-226. doi: 10.12206/j.issn.2097-2024.202204040
SONG Xingshuang, LI Qi, DU Lina. Effect of the insulated environment on brain function and its therapeutical drugs[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(2): 74-80. doi: 10.12206/j.issn.2097-2024.202208042
Citation: TIAN Shuo, LI Jianzhong. Construction and expression of lentiviral vector overexpressing ZNF24 gene in human colorectal cancer HCT116 cell[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(4): 222-226. doi: 10.12206/j.issn.2097-2024.202204040
  • 转录因子ZNF24(也称KOX17或ZNF191 )是类Krüppel锌指转录因子家族的成员,N端有一SCAN结构域(也称LeR结构域),该区域不仅含有亮氨酸[1],还有选择性的异型或同型寡聚物[2];C端有四个连续的锌指模体且都是典型的类Krüppel样[2]。我们通过小鼠胚胎干细胞基因打靶,获得了ZF-12+/-(又称Zfp191,与ZNF24同源)ES细胞,并将细胞注射入小鼠的囊胚腔,得到了正常发育的ZF-12+/-小鼠,然而得到的ZF-12 −/-小鼠胚胎发育缓慢且在7.5 d左右胚胎致死[2]。最近研究表明,ZNF24通过调控微血管内皮细胞的增殖、迁移和侵袭,在内皮细胞的血管生成中起重要作用[3]。我们前期研究发现ZNF24作为一个因子拥有多种功能,比如参与激酶转录活性调控、血管增殖、大脑发育以及DNA损伤应答等[4]

    ZNF24基因最初由上海交通大学医学院的陈竺院士科研团队与复旦大学的余龙教授科研团队合作从造血细胞中克隆获得,定位于18q12.1[5]。该区域的缺失与人类多种肿瘤相关,如浸润性乳腺癌[6]、结直肠癌[7]等。余龙教授科研团队报道了ZNF24在肝癌中的不同作用:其在肝癌组织中表达上调,可通过与β-连环蛋白基因的启动子结合,激活β-连环蛋白基因转录,进而激活其下游靶基因如细胞周期蛋白 D1 (cyclin D1)基因,促进肝癌细胞的增殖[8];也可直接与DNA甲基转移酶1(DNMT1)启动子结合,激活DNMT1基因转录,引起肝癌细胞DNA甲基化改变,进而激活PI3K-AKT途径促进肝癌细胞增殖[9],提示ZNF24在肝癌中是癌基因。而在转移肝癌组织中ZNF24表达下调,ZNF24通过与DGL1(Discs Large 1) 启动子结合,激活DGL1基因转录,通过Yes相关蛋白(Yes-associated protein, YAP)信号通路抑制肝癌细胞的转移,提示ZNF24在肝癌转移中是抑癌基因[10]。此外,前列腺癌中ZNF24表达上调,通过调控Twist1促进肿瘤细胞上皮间质转换(EMT)、增殖、侵袭和转移,提示ZNF24在前列腺癌中是癌基因[11]。但是,ZNF24在甲状腺癌中表达下调,通过竞争性结合β-连环蛋白,抑制它与辅助因子LEF1/TCF1形成功能性复合物,从而抑制Wnt信号通路,进而抑制肿瘤增生与转移[12],提示ZNF24在甲状腺癌中是抑癌基因。令人感兴趣的是,研究miRNA-940(microRNA-940)在肿瘤中的作用,发现ZNF24是其调控的靶基因,在三阴乳腺癌(TNBC)中miRNA-940靶向下调ZNF24,抑制三阴乳腺癌(TNBC)细胞的增殖和转移[13],提示ZNF24促进TNBC细胞的增殖和转移是癌基因。但是,在人胃癌组织中miRNA-940 通过靶向抑制 ZNF24 表达,促进癌细胞的侵袭和转移[14],提示ZNF24抑制胃癌细胞的侵袭和转移是抑癌基因。这些结果表明,ZNF24通过调控不同的靶基因,在多种不同肿瘤的发生发展、侵袭和转移中起着重要复杂的两面性作用(促进或抑制)。

    结直肠癌是一种常见的恶性肿瘤,在我国拥有较高的发病率和较低的生存率[15]。目前,结直肠癌与ZNF24的关系仍不明确。因此,我们构建ZNF24基因过表达的慢病毒载体,包装成病毒并转染结直肠癌细胞HCT116,获得了ZNF24基因过表达的HCT116细胞株,为后续研究的开展提供物质基础。

    • 293T细胞、人结直肠癌HCT116细胞、大肠杆菌感受态DH5α均来自本实验室,质粒pMT406、包装质粒pCMV-dR8.9、pCMV-VSV-G均购自上海Sangon Biotech公司。

    • 限制性内切酶BamHI(R6021)、限制性内切酶XhoI(RK21100)、DNA胶回收试剂盒(AK1001)、逆转录试剂盒(RR037A)、荧光定量PCR试剂盒(RR420L)(Takara公司,日本);质粒小提试剂盒(PD1211,Promega公司,美国);无缝克隆试剂盒(C5891)、 AxyPrep 总RNA小量提取试剂盒(AP-MN-MS-RNA-250G)、兔抗ZNF24多克隆抗体(D324009)、兔抗GAPDH多克隆抗体(D110016)、山羊抗兔IgG(D111018)(Sangon Biotech公司,中国);BCA蛋白浓度测定试剂盒(P0012A)、胰酶(C0202)(碧云天生物科技公司,中国);DMEM细胞培养基(SH30022,赛默飞世尔生物科技公司,美国);胎牛血清(6170-078, Ausbian公司,澳大利亚)。

    • ZNF24基因、3FLAG和相关引物均由上海Sangon Biotech公司合成。Primer 1和Primer 2用于PCR扩增ZNF24,产物大小为1 128 bp;Primer 3和Primer 4用于PCR扩增3FLAG,产物大小为111 bp; Primer 5和Primer 6用于菌落PCR鉴定,阳性产物大小为1 438 bp。引物序列见表1

      表 1  ZNF24基因、3FLAG的特异性引物序列以及相关引物序列

      片段名称序列
      Primer 1TGGCAAAGAATTGGATCCGCC
      ACCATGTCTGCACAGTCAGTGGAAG
      Primer 2AACTTTCACAACATTCAGAAGTTTT
      Primer 3CTGAATGTTGTGAAAGTTGACTACAAGGATGA
      Primer 4CATAATACTAGTCTCGAGTTATTTGTCGTCATCATC
      Primer 5CGGCTCTAGAGCCTCTGCTA
      Primer 6CGTGAGTCAAACCGCTATCCAC

      ZNF24(或3FLAG)的PCR反应条件:98 ℃预变性3 min;98 ℃变性10 s,55 ℃退火15 s,72 ℃延伸1 min(或10 s),共 30个循环;72 ℃延伸10 min。

    • 用限制性内切酶BamHI和XhoI酶切pMT406,胶回收线性化载体(大小约8 537 bp)。线性化的载体、PCR扩增的ZNF24与3FLAG产物,通过同源重组(无缝克隆)反应,将10 μl反应产物转化至DH5α。平皿培养过夜,挑取单克隆进行菌落PCR鉴定, 阳性克隆产物预期为1 438 bp。PCR阳性的克隆进一步测序鉴定,测序正确的重组质粒命名为pMT-ZNF24。

    • 转染前24 h,胰酶消化并重悬293T细胞,取10个10 cm的培养皿,以1×107个/皿的细胞密度铺板。细胞贴壁后将原有培养基更换为Opti-MEM®培养基,体积为9 ml。取100 μg pMT-ZNF24(或pMT406)、65 μg pCMV-dR8.9、35 μg pCMV-VSV-G和适量Opti-MEM®培养基加入至15 ml无菌离心管中混匀,总体积为5 ml。再取500 μl细胞转染液和4.5 ml Opti-MEM®培养基混匀后滴加至上述离心管中,轻柔摇晃至均匀,室温孵育20 min。孵育完成后,将混合液分装到293T细胞中,每皿1 ml,轻轻摇晃混匀后放回培养箱。细胞培养6 h后弃上清液,加入10 ml DMEM培养基继续培养,2 d后收集细胞上清液。用60 ml 0.22 μm PVDF过滤装置过滤上清液, 4 ℃,25 000 r/min离心2 h,然后分装保存于−80 ℃冰箱。采用孔稀释法测定病毒滴度:准备5个EP管,各加入90 μl含10%FBS的高糖DMEM。EP管1中添加10 μl的待测病毒原液,EP管2中添加EP管1混合液10 μl,依次操作至EP管5。293T细胞接种到96孔板的 5个孔中,每孔约5×104个细胞,待细胞贴壁后去掉原液,依次加入EP管中的病毒液继续培养,24 h后换液,观察并记录3 d后稀释率最大孔中的荧光细胞数量。病毒滴度=荧光细胞数/病毒原液量。

    • 胰酶消化HCT116细胞,重悬后接种于24孔板中,每孔细胞约为3×105个,待细胞融合达30%时以细胞感染指数(MOI)=10计算病毒浓缩液体积并转染细胞。将HCT116细胞分为3组:空白对照组(HCT116细胞不转染病毒)、阴性对照组(HCT116细胞转染不含ZNF24的空载体慢病毒)和ZNF24组(HCT116细胞转染ZNF24过表达慢病毒)。转染72 h后,在ZNF24组和阴性对照组中加入 4 μg / ml嘌呤霉素,继续培养72 h后得到稳定表达细胞株。

    • 慢病毒转染HCT116细胞,TRIzol法裂解细胞并提取RNA,mRNA反转录成cDNA后扩增ZNF24。ZNF24引物序列上游为CATTCCCTAAGGCACTGTGAT,下游为TTGAGGAACACCCATACTGAGA;GAPDH引物序列上游为TGACTTCAACAGCGACACCCA,下游为CACCCTGTTGCTGTAGCCAAA。2−ΔΔCt法分析ZNF24 mRNA的表达量。

    • 慢病毒转染HCT116细胞,裂解液(含蛋白酶抑制剂)裂解细胞,提取总蛋白并测定浓度。SDS-PAGE电泳后转模,脱脂牛奶封闭1 h,室温一抗孵育3 h,室温荧光素标记二抗孵育2 h,Odyssey双色红外激光成像系统检测荧光信号。

    • 实验数据以3个独立试验的($\bar{x} \text{±} s$)表示,采用 GraphPad Prism 5.0软件中单因素方差分析或t检验进行分析。

    • 电泳结果显示,分别获得了大小约1 128 bp的ZNF24扩增产物与大小约111 bp的3FLAG扩增产物(图1)。

      图  1  目的基因PCR扩增产物电泳结果

    • 电泳结果显示,得到大小约8 537 bp线性化载体条带(图2)。

      图  2  载体pMT406线性化

    • 重组质粒经PCR扩增,电泳结果显示,获得约1 438 bp大小的阳性克隆PCR产物条带(图3)。对PCR产物进行测序比对分析,结果与目标序列完全一致。

      图  3  重组慢病毒载体pMT-ZNF24菌落PCR鉴定

    • ZNF24过表达慢病毒的滴度为3.25×109 TU/ml,ZNF24-NC慢病毒的滴度为6.19×109 TU/ml。以MOI=10计算病毒体积并转染HCT116细胞,4 μg /ml 嘌吟霉素筛选,荧光显微镜下约85%的细胞呈现绿色荧光蛋白(GFP)表达(图4)。

      图  4  荧光显微镜下观察转染ZNF24、ZNF24-NC慢病毒的HCT116细胞 ×100

    • qRT-PCR结果表明,转染ZNF24过表达慢病毒的细胞组中ZNF24的mRNA表达显著高于阴性对照组和空白对照组(图5)。

      图  5  HCT116细胞中ZNF24 mRNA相对表达水平

    • 蛋白印迹检测结果显示,转染ZNF24过表达慢病毒的细胞组中ZNF24表达水平明显高于阴性对照组和空白对照组 (图6)。

      图  6  HCT116细胞中ZNF24蛋白表达水平

    • 结直肠癌是癌症致死的一个主要原因[16],致死的关键要素是其高水平的复发和转移[17]。结肠癌的发病机制十分复杂,涉及多种癌基因、抑癌基因的异常表达。因此,研究结直肠癌的发病机制,特别是结直肠癌复发转移的机制极其重要。研究表明,多种转录因子在结直肠癌等肿瘤中异常表达,参与结直肠癌的发病、转移和侵袭,如在肿瘤微环境参与VEGF表达调控的 STAT3转录因子已成为新的抗肿瘤药物的作用靶点[18]

      体外与乳腺癌细胞肿瘤动物模型的研究表明,ZNF24通过与血管内皮生长因子(VEGF)启动子上游序列(−144/−134, 非(TCAT) n重复序列)直接结合抑制VEGF基因转录,从而抑制血管增生达到抑制肿瘤生长[19]。然而,敲减人微血管内皮细胞中的ZNF24导致细胞迁移,侵袭和增殖减弱,暗示ZNF24具有促进人微血管内皮细胞的血管生成潜力[3]。多项研究表明ZNF24通过调控不同靶基因(如Twist1[11]、β-连环蛋白[8]和DGL1[10]等)的转录表达以及竞争性结合蛋白因子[8],在多种不同肿瘤的发生发展、侵袭和转移中起着重要复杂的两面性作用(促进或抑制)。

      本研究成功构建了ZNF24过表达慢病毒载体,获得相应的病毒。转染HCT116细胞,获得稳定过表达ZNF24的HCT116细胞株,为开展后续研究提供了物质基础。

参考文献 (19)

目录

/

返回文章
返回