Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 40 Issue 3
Jul.  2022
Turn off MathJax
Article Contents

WAN Zhong, LIU Wangzhenzu, TAN Mingyue, XU Dongliang, HU Cheng, JI Wanli. Analysis of chemical ingredients of modified Shenqi Dihuang decoction by UPLC-LTQ-Orbitrap-MS[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 231-237, 264. doi: 10.12206/j.issn.1006-0111.202112054
Citation: WAN Zhong, LIU Wangzhenzu, TAN Mingyue, XU Dongliang, HU Cheng, JI Wanli. Analysis of chemical ingredients of modified Shenqi Dihuang decoction by UPLC-LTQ-Orbitrap-MS[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 231-237, 264. doi: 10.12206/j.issn.1006-0111.202112054

Analysis of chemical ingredients of modified Shenqi Dihuang decoction by UPLC-LTQ-Orbitrap-MS

doi: 10.12206/j.issn.1006-0111.202112054
  • Received Date: 2021-12-19
  • Rev Recd Date: 2022-03-11
  • Available Online: 2023-11-06
  • Publish Date: 2022-05-25
  •   Objective  To analyze the chemical compounds of Shenqi Dihuang decoction by the ultraperformance liquid chromatography coupled with linear quadrupole ion trap-orbitrap mass spectrometry (UPLC-LTQ-Orbitrap-MS).   Methods  Warters ACQUITY UPLC HSS T3 (2.1 mm ×100 mm, 1.8 μm) was used as chromatographic column with mobile phase: 0.1% formic acid water (A)-0.1% formic acid acetonitrile (B) with gradient elution, and flow rate was 0.3 ml/min. Electrospray ion source (ESI) and an electrostatic field orbital ion trap mass analyzer were adopted, which was used to collect mass spectrometry fragment information with positive and negative ion modes, by comparing with the relative retention time of the reference substance. In addition, the fragment information of the mass spectrum was used to identify the compounds. The accurate identification of the chemical components in Shenqi Dihuang decoction was confirmed with literature.   Results  The study found that UPLC-LTQ-Orbitrap-MS technology could be used to identify 62 chemical components, including 13 aromatic acids, 9 flavonoids, 8 saponins, and 5 aromatic amines, 3 keto acids, 2 phenols, 1 aromatic quinone and other ingredients in Shenqi Dihuang decoction.   Conclusion  The identification analysis method in this study was efficient and accurate, which could be applied to the identification and analysis of chemical components in Shenqi Dihuang decoction and provided the important experimental data for the research on the material basis and mechanism.
  • [1] 顾坚毅, 赵建华, 华金骏, 等. 加味参芪地黄汤在晚期前列腺癌最大限度雄激素阻断治疗中的应用[J]. 中国中医药信息杂志, 2015, 22(12):26-29. doi:  10.3969/j.issn.1005-5304.2015.12.007
    [2] 高伟利, 余云辉. 参芪地黄汤联合前列地尔注射液治疗慢性肾小球肾炎的效果观察[J]. 河南医学研究, 2018, 27(19):3561-3562. doi:  10.3969/j.issn.1004-437X.2018.19.059
    [3] 韩晴, 李淑菊. 参芪地黄汤加味治疗肾脏疾病的验案分析[J]. 黑龙江中医药, 2018, 47(2):49-50.
    [4] 黄丽丽, 郭燕芬, 陈煜宇, 等. 参芪地黄汤加减治疗早期糖尿病肾病的临床疗效观察[J]. 广州医科大学学报, 2019, 47(5):103-106. doi:  10.3969/j.issn.2095-9664.2019.05.29
    [5] 瞿飞, 高金梅, 赵杰, 等. 参芪地黄汤对糖尿病肾病模型大鼠肾组织中TGF-β1及VEGF表达的影响[J]. 江苏中医药, 2021, 53(7):75-78.
    [6] 康莹, 毛怡宁, 王方方, 等. UPLC-LTQ Orbitrap MS对沙棘叶化学成分的分析[J]. 中国现代中药, 2018, 20(11):1340-1346,1366.
    [7] 马永青, 王璐, 刘颖, 等. 基于UPLC-LTQ-Orbitrap-MS技术快速解析杜仲颗粒化学成分[J]. 分析测试学报, 2019, 38(7):817-822. doi:  10.3969/j.issn.1004-4957.2019.07.008
    [8] 周霖, 孙志, 王肖辉, 等. 基于UHPLC-Q-Orbitrap HRMS的参松养心胶囊化学成分识别及作用机制研究[J]. 中国医院药学杂志, 2020, 40(4):375-380,396.
    [9] 罗影, 左中夫, 程雪, 等. 葛花总黄酮通过Nrf2/HO-1信号通路对1型糖尿病大鼠肾脏的保护作用[J]. 中成药, 2021, 43(11):3178-3182. doi:  10.3969/j.issn.1001-1528.2021.11.047
    [10] Anjaneyulu M, Chopra K. Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats[J]. Clin Exp Pharmacol Physiol,2004,31(4):244-248. doi:  10.1111/j.1440-1681.2004.03982.x
    [11] Yoon I S, Cho S S. Effects of lobetyolin on xanthine oxidase activity in vitro and in vivo: weak and mixed inhibition[J]. Nat Prod Res,2021,35(10):1667-1670. doi:  10.1080/14786419.2019.1622108
    [12] 王梅, 王越欣, 武英茹, 等. 5-羟甲基糠醛在中药加工过程中的变化及药理作用研究概况[J]. 药物评价研究, 2020, 43(11):2319-2327.
    [13] 周佳, 齐红艺. HPLC-MS/MS法同时测定玄参中8个成分的含量[J]. 中国现代中药, 2017, 19(5):670-674.
    [14] 欧汝彪, 于力, 郝志宏, 等. 五环三萜类化合物对大鼠慢性肾病的保护作用[J]. 中华实验外科杂志, 2006, 23(2):188-189. doi:  10.3760/j.issn:1001-9030.2006.02.020
    [15] 林慧敏, 任强强, 许文, 等. 基于UHPLC-Q Exactive轨道肼高分辨质谱分析八珍方化学成分[J]. 福建中医药, 2021, 52(9):31-38. doi:  10.3969/j.issn.1000-338X.2021.09.010
    [16] 梁丽. 参芪地黄汤治疗糖尿病肾病的临床观察[J]. 中医临床研究, 2021, 13(12):60-61. doi:  10.3969/j.issn.1674-7860.2021.12.022
    [17] 韩佳妮. 参芪地黄汤治疗早期糖尿病肾病的疗效[J]. 医学信息, 2019, 32(22):139-141.
    [18] 海江, 刘芳. 参芪地黄汤加味治疗气阴两虚兼血瘀证糖尿病肾病临床疗效及对尿KIM-1、L-FABP影响[J]. 辽宁中医药大学学报, 2021, 23(11):163-166.
    [19] 彭君, 秦鹏, 邢天柱, 等. 参芪地黄汤联合穴位敷贴保肾贴治疗慢性肾小球肾炎疗效观察[J]. 四川中医, 2019, 37(7):134-136.
    [20] 于国华, 杨洪军, 李俊芳, 等. 基于UHPLC-LTQ-Orbitrap-MS/MS技术分析枳实中的化学成分[J]. 中国中药杂志, 2016, 41(18):3371-3378.
    [21] 张靖, 徐筱杰, 徐文, 等. HPLC-LTQ-Orbitrap-MSn快速鉴别党参药材中化学成分[J]. 中国实验方剂学杂志, 2015, 21(9):59-63.
    [22] 梅国栋, 赵玲, 陈建平, 等. 5-HMF抑制A375细胞增殖的信号转导通路[J]. 中国科技论文, 2014, 9(9):1005-1008. doi:  10.3969/j.issn.2095-2783.2014.09.008
    [23] 王晓霞, 庄鹏宇, 陈金铭, 等. 党参化学成分的研究[J]. 中草药, 2017, 48(9):1719-1723.
    [24] 苗树船, 夏勋, 张列. 茯苓酸抑制H2O2诱导的脑微血管内皮细胞凋亡及促进细胞存活[J]. 西部医学, 2021, 33(7):982-986. doi:  10.3969/j.issn.1672-3511.2021.07.009
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  / Tables(1)

Article Metrics

Article views(2888) PDF downloads(19) Cited by()

Related
Proportional views

Analysis of chemical ingredients of modified Shenqi Dihuang decoction by UPLC-LTQ-Orbitrap-MS

doi: 10.12206/j.issn.1006-0111.202112054

Abstract:   Objective  To analyze the chemical compounds of Shenqi Dihuang decoction by the ultraperformance liquid chromatography coupled with linear quadrupole ion trap-orbitrap mass spectrometry (UPLC-LTQ-Orbitrap-MS).   Methods  Warters ACQUITY UPLC HSS T3 (2.1 mm ×100 mm, 1.8 μm) was used as chromatographic column with mobile phase: 0.1% formic acid water (A)-0.1% formic acid acetonitrile (B) with gradient elution, and flow rate was 0.3 ml/min. Electrospray ion source (ESI) and an electrostatic field orbital ion trap mass analyzer were adopted, which was used to collect mass spectrometry fragment information with positive and negative ion modes, by comparing with the relative retention time of the reference substance. In addition, the fragment information of the mass spectrum was used to identify the compounds. The accurate identification of the chemical components in Shenqi Dihuang decoction was confirmed with literature.   Results  The study found that UPLC-LTQ-Orbitrap-MS technology could be used to identify 62 chemical components, including 13 aromatic acids, 9 flavonoids, 8 saponins, and 5 aromatic amines, 3 keto acids, 2 phenols, 1 aromatic quinone and other ingredients in Shenqi Dihuang decoction.   Conclusion  The identification analysis method in this study was efficient and accurate, which could be applied to the identification and analysis of chemical components in Shenqi Dihuang decoction and provided the important experimental data for the research on the material basis and mechanism.

WAN Zhong, LIU Wangzhenzu, TAN Mingyue, XU Dongliang, HU Cheng, JI Wanli. Analysis of chemical ingredients of modified Shenqi Dihuang decoction by UPLC-LTQ-Orbitrap-MS[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 231-237, 264. doi: 10.12206/j.issn.1006-0111.202112054
Citation: WAN Zhong, LIU Wangzhenzu, TAN Mingyue, XU Dongliang, HU Cheng, JI Wanli. Analysis of chemical ingredients of modified Shenqi Dihuang decoction by UPLC-LTQ-Orbitrap-MS[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(3): 231-237, 264. doi: 10.12206/j.issn.1006-0111.202112054
  • 参芪地黄汤,源于清代医家沈金鳌的《杂病犀烛》,作为中医经典方剂,具有益气养阴,滋肾健脾之功效,在临床上广泛应用于治疗肾病及前列腺疾病[1-2]。加味参芪地黄汤是在由六味地黄汤的基础上加补气药而成[3],其中,熟地黄具有滋肾的功效,怀山药和茯苓兼具补肝渗湿之效,温肝之山茱萸,泽泻与丹皮具有泄浊清肝的作用。此外,该方在补肝益肾方的基础上再伍以党参,黄芪以益气补脾,实则扩大了六味地黄丸的临床应用范围。此外,黄芪具有健脾益气的功效,补肾填精之熟地黄,两药具有固护正气之功效,共为君药。臣药为益气生津之党参和补益肝肾并能涩精之山萸肉、补脾阴又能固精之山药。山萸肉具有补益肝肾和涩精益阴的功效,可平补肾之阴阳,补脾肾阴、固肾亦能除湿之山药,与熟地黄三药相配,肾、肝、脾三脏共补,是为“三补”,泽泻具有利湿泄浊的功效,牡丹皮清热泻火,茯苓淡渗脾湿,是为“三泻”。三补三泻,平补阴阳,可补脾益肾。文献报道显示,参芪地黄汤可通过减轻蛋白尿症状及微炎症状态,从而改善肾功能[4]。参芪地黄汤可降低糖尿病肾病大鼠模型肾组织中的TGF-β1、VEGF的表达水平而发挥抗糖尿病肾病的作用[5]。然而,加味参芪地黄汤由多味药组成,成分体系复杂,缺乏其活性成分的系统性研究。因此,明确加味参芪地黄汤中组分对进一步研究其药效作用意义重大。而中药复方具有成分体系复杂,这给分析分离带来了挑战。目前,超高效液相色谱技术联合质谱(Orbitrap-MS)已广泛应用于中药分析,Orbitrap-MS是静电场轨道阱高分辨质谱,其分辨率高,能够提供准确的分子量[6-8]。因此,本研究利用超高效液相色谱技术联合高分辨质谱(UPLC-Orbitrap-MS)建立加味参芪地黄汤化学成分的鉴定分析方法,依据对照品、质谱碎片信息及文献报道,此外,采用软件Mass Frontier预测分析代表性成分的裂解途径,明确加味参芪地黄汤的化学成分组成,以期为研究该方药效物质基础提供依据。

    • LTQ-orbitrap高分辨质谱仪、电喷雾离子源(ESI)及Xcalibur2.1数据处理系统、Ultimate 3000超高效液相色谱仪(Thermo Fisher公司);Eppendorf Centrifuge 5424R高速离心机(艾本德中国有限公司);MS104S型分析天平(梅特勒公司)。

    • 党参(批号:2021042350,上海上药华宇药业有限公司);茯苓(批号:2021110104,上药余天成医药有限公司);淮山药(批号:2021090301,上海德华国药制品有限公司);熟地黄(批号:210816)、菟丝子(批号:210906)、牡丹皮(批号:210926)均购自上海虹桥中药饮片有限公司;制首乌(批号:20211112-1)、黄芪(批号:20211024-1),泽泻(批号:20210924-2)均购自上海万仕诚国药制品有限公司;丹参(批号:2107089,上海雷允上中药饮片厂有地黄苷D(批号:J02GB153517)、限公司);山萸肉(批号:21060201,上海德大堂国药有限公司);甘草(批号:21072209,上海蔡同德药业有限公司)。上述药材经上海虹桥饮片有限公司陈燕军药师鉴定,均符合2020版《中国药典》规定。对照品:5-羟甲基糠醛(批号:H12M9Z61023)、党参炔苷(批号:J30GB153014)、紫丁香苷(批号:Y14N11H131195)、茯苓新酸B(批号:J10GB150678),槲皮素(批号:C09S8Y43412)均购自上海源叶生物有限公司,对照品纯度均>98%。乙腈和甲醇为色谱纯,其他试剂均为分析纯,购自Thermo Fisher Scientific。

    • 依据加味参芪地黄汤各味药材,在TCMSP数据库 (http://lsp.nwu.edu.cn/tcmsp search.php)、中科院上海有机研究所化学专业数据库(http://www.organchem.csdb.cn)及中医药活性成分数据库HIT (http://lifecenter.sgst.cn/hit/)、中医药活性成分数据库TCMID (www.megabionet.org/tcmid/)中搜索,收集加味参芪地黄汤各味药材的化合物信息,共建立包含786种成分数据库。

    • 取党参6 g、黄芪15 g、熟地黄15 g、制首乌15 g、菟丝子15 g、山药15 g、泽泻10 g、丹参10 g、茯苓9 g、牡丹皮9 g、山萸肉9 g、炙甘草5 g,加入8倍量水浸泡2 h,煎煮2次,每次煎煮30 min,过滤药渣,浓缩至1 g/ml,精密移取该样品5.00 ml,加70%甲醇定容至50 ml,摇匀,离心15 min (12 000 r/min),取上清液,通过0.22 μm微孔滤膜滤过,即得供试品溶液。

    • 分别称取各个对照品槲皮素、5-羟甲基糠醛、党参炔苷、紫丁香苷、地黄苷D、茯苓新酸B 1.0 mg,至5 ml容量瓶中,加甲醇适量,超声,溶解,加甲醇定容,作为对照品溶液。

    • 采用Warters ACQUITY UPLC HSS T3色谱柱 (2.1 mm ×100 mm,1.8 μm),流动相: 0.1%甲酸水(A)-0.1%甲酸乙腈(B),梯度洗脱(0~1 min,5%B;1~2 min,5%B→40%B;2~7 min,40%B→80%B;7~15.0 min,80%B→95%B;15.0~19.5 min,95%B→5%B),流速0.3 ml/min,柱温35 ℃,进样量10 μl。

    • 质谱的离子源方式为电喷雾,正离子毛细管喷雾电压为3.8 kV,负离子毛细管喷雾电压为4.0 kV,离子源温度为100 ℃,毛细管温度为350 ℃,鞘气流速为45 arb,辅助气体流速15 arb,扫描分辨率(R)为60 000,质谱采集范围为m/z 50~1 000,以动态数据依赖性扫描作为二级质谱扫描模式,其分辨率为15 000,高能碰撞解离模式(high energy collision dissociation,HCD)。

    • 采用Thermo Xcalibur 2.2对质谱数据进行分析处理。根据建立的数据库,采用对照品比对、文献报道及Thermo Xcalibur 2.2 workstation软件预测分析相结合,对峰强度>10 000的峰进行研究分析,从而鉴定化合物。采用Mass Frontier (Thermo Scientific, Bremen, Germany)用于分析和预测化合物的碎片信息及裂解规律。

    • 采用UPLC-LTQ-Orbitrap-MS/MS技术分析加味参芪地黄汤化学成分,在正、负离子模式下采集数据(图1),通过质谱软件Thermo Xcalibur 2.2 workstation分析可能的碎片信息,确定每个离子峰的质谱裂解规律,结合对照品及文献报道进行比对分析,从而进行化合物的鉴定。本次研究从加味参芪地黄汤共鉴定出62个化合物,包括13个芳香酸类、9个黄酮类、8个皂苷类成分、5个芳香胺类、3个酮酸类、2个酚类、1个芳香醌类及其他成分,具体结果见表1

      编号化合物名称tRt/min)分子式理论值实际值离子模式误差/ ×10−6碎片离子信息(m/z)
      11-脱氧-1-(甲氨基)己糖醇0.73C7H17NO5195.10229195.10977[M-H]−4.63176.05,162.08,159.01
      2麝香木酚0.75C4H6N2O2114.03455114.04268[M-H]−2.1385.03
      3戊糖酸0.78C5H10O6166.03936166.04721[M-H]−3.19147.03
      4二甲基-4-羟色胺0.81C12H16N2O204.13353204.12674[M+H]+2.34204.17,188.11
      5氨己烯酸0.82C6H11NO2129.08625129.07919[M+H]+1.6884.04
      6美索卡因0.83C15H24N2O248.19613248.18908[M+H]+0.85221.05
      7丙二酸1.09C3H4O4104.00258104.01085[M-H]−1.00102.02,93.60,59.01
      8L-焦谷氨酸1.09C5H7NO3129.03421129.04248[M-H]−0.89120.07
      9琥珀酸1.10C4H6O4118.01823118.02643[M-H]−1.4899.01,73.03
      10没食子酸1.10C7H6O5170.01314170.02101[M-H]−3.02125.02
      11柠檬酸1.15C6H8O7192.01862192.02609[M-H]−4.75173.01,111.01
      122,5-二甲基-1,3-噁唑-4,4,5(5H)-三羧酸三甲酯1.21C11H15NO7273.09212273.08553[M+H]+2.47238.07,192.07,130.05,97.03
      13亚甲基琥珀酸1.21C5H6O4130.018235130.0264[M-H]−1.64128.04
      142-四氢糠酸1.23C5H4O3111.00767112.01584[M-H]−1.7894.64
      15地黄苷D*1.81C27H42O20686.22415686.23109[M-H]2.01505.15
      16丁卡因2.00C15H24N2O2264.19105264.18419[M+H]+1.56247.18
      175-羟甲基糠醛*2.07C6H6O3126.03897126.03532[M+H]+3.50109.03,81.03
      18联苯三酚2.53C6H6O3126.03897126.03207[M+H]+2.97109.03,81.03
      19N'-羟基-N-苯基辛二酰胺3.37C2H4N2O3264.14684264.14812[M+H]+2.74247.18
      20β-咔啉3.51C11H8N2168.07602168.06909[M+H]+2.05150.06
      21邻羟基苯甲酸3.54C7H6O3138.03897138.03186[M+H]+1.22111.04,83.05,79.02
      22紫丁香苷*3.57C17H24O9372.13125372.19681[M+Na]+−0.23325.12,232.07
      232-萘胺3.59C10H9N143.08077143.07369[M+H]+1.31143.03
      24党参皂苷3.61C29H42O18677.23150677.22874[M-H]3.43497.22,453.23
      25芹菜素-7-O-新橙皮糖苷3.74C27H30O14578.17083578.16403[M+H]+0.82285.08,270.05,253.05
      26已基-β-龙胆二糖苷3.89C18H34O11426.20173426.20035[M-H]−1.39263.15,161.05
      27党参苷I3.90C21H26O12470.13405470.04950[M-H]−0.51393.04,169.01
      28齐墩果酸3.90C30H48O3456.36762457.24234[M+H]+0.48385.19,295.19,277.18
      29四氰基对醌二甲烷3.91C12H4N4204.05087204.04263[M+H]+−4.71146.06
      30香草醛4.09C8H8O3152.05462152.04759[M+H]+1.64143.03,125.02,79.02
      31党参炔苷*4.12C20H28O8396.14238396.14272[M-H]0.36395.09,305.10,215.12,185.09,159.09
      32乙酰对氨苯乙醚4.18C10H13NO2179.101905179.09498[M+H]+1.93179.06,175.03,162.09,138.09
      120.08,112.08
      33苯酰甲酸4.43C8H6O3150.03897150.03195[M+H]+1.73150.03,121.03,93.03
      342-(5-甲基-1H-四唑-1-基)-N-(2-硝基苯基)乙酰胺4.52C10H10N6O3261.073064262.08262[M-H]4.53231.07
      35槲皮素*4.53C15H10O7302.04992302.04283[M+H]+0.60195.03,167.07,149.06
      365,7-二羟基-4'-甲氧基异黄酮4.56C16H12O5284.07575284.06860[M+H]+0.46270.05,255.07,227.07,175.04
      151.04,123.04
      371-(2,4,6-三硝基苯基)-1H-苯并三唑4.70C12H6N6O6330.02650330.03575[M-H]2.63314.01
      38五碳醛糖基葡萄糖正己醇苷4.88C17H32O10396.19117396.19102[M-H]4.43349.20
      39N-(4-乙酰氨基苯基)-2-(1,3-二甲基-2,6-二氧代-1,2,3,6-四氢-7H-嘌呤-7-基)乙酰胺4.94C17H18N6O4370.13057370.13951[M-H]1.50207.10,161.02
      40高香草酸5.03C9H10O4182.04953182.05716[M-H]−4.13166.03
      41创伤霉素5.11C12H20O3212.14852212.14143[M+H]+0.88141.00,105.04
      42黄芪甲苷5.18C41H68O14784.45253784.45117[M-H]1.02178.94,160.94,118.95
      43羟棕榈酰二氢鞘氨醇5.19C18H39NO2302.30535301.29842[M+H]+1.12286.05
      442-[(二甲氨基)甲基]-1-(3-甲氧基苯基)-1-环己醇5.34C16H25NO2263.19580263.18913[M+H]+2.30177.13,88.08
      457-(4-硝基苯基)-4-蝶啶胺5.39C12H8N6O2268.06250268.07213[M-H]4.67223.17
      46脱氨基神经氨酸5.44C9H16O9268.07105268.07811[M-H]−4.94252.04
      47黄芪皂苷II5.50C43H70O15826.46069826.46179[M+Na]+3.12669.40,477.34
      48泽泻醇C-23-醋酸酯5.62C32H48O6528.73178528.72631[M+H]+2.35451.32
      49降木脂素5.66C17H18O5302.12270302.11595[M+H]+1.75167.07,149.06,133.06,123.04
      50茚三酮6.04C9H6O4178.033885178.02666[M+H]+1.23151.04,131.03
      512-[3-(-2-四唑基)-1-金刚烷基]乙酰肼6.05C13H20N6O276.16148276.17109[M-H]4.47151.04
      522,6-二甲基-4-(5-硝基-2-吡啶基)吗啉6.36C11H15N3O3236.10296237.11145[M-H]0.45192.11
      53茯苓新酸B*7.14C30H44O5484.31050484.32191[M-H]0.75465.02,409.03,365.03
      54泽泻醇B乙酸酯7.99C32H50O5514.74113514.76262[M+H]+1.26514.36
      55丹皮酚8.10C9H10O3166.06103166.05575[M-H]3.52122.03,108.02
      56二苯并-γ-吡喃酮8.71C13H8O2196.04405196.05165[M-H]−3.98149.24
      57邻苯二甲酸酐8.92C8H4O3148.02332148.01593[M+H]+−0.76147.80,121.03
      58双丁苯乙酸9.35C30H44O4468.33123468.32366[M+H]+−0.65450.93
      59Codonopyrrolidium A10.54C19H28NO5350.20402350.21410[M+H]+3.67268.21
      60甲酪氨酸10.58C10H13NO3195.08116195.08867[M-H]−4.49145.24
      61非尼戊醇10.70C11H16O164.11174164.11961[M-H]−3.07152.04
      621-{1-[1-(2-甲氧基乙基)-1H-四唑-5-基]戊基}-4-甲基哌嗪11.98C14H28N6O296.224086296.23344[M-H]3.32277.22,195.14
      注:*表示该化合物由对照品进行指认。
    • 黄酮类化合物具有抗炎、抗肿瘤活性,研究发现其具有良好的抗糖尿病肾病的作用[9-10]。本次研究采用UPLC–LTQ–Orbitrap MS共鉴定出9个黄酮类成分。以化合物35为例分析黄酮类化合物的裂解规律,化合物35在正离子模式下,形成准分子离子峰[M+H]+ m/z 303.04283,该离子峰进行碰撞诱导解离,进而色原酮母核发生i裂解,失去-C7H6O4形成m/z 149.06碎片峰,此外,准分子离子峰[M+H]+ m/z 303.04283色原酮母核可直接裂解失去-C6H6O2,形成m/z 195.03碎片峰,进而失去-CO,形成m/z 167.07碎片峰,结合对照品比对,化合物35鉴定为槲皮素,其可能的质谱裂解途径见图2

    • 炔类化合物是党参中重要的活性成分,本次鉴定出党参中党参炔苷这一化合物,文献报道显示其具有抗炎、抗氧化的活性[11]。根据多级碎片信息,为其他炔类的裂解规律提供依据。31号峰在HCD碰撞模式下,形成准分子离子峰[M-H] m/z 395.09272,该离子峰进行碰撞诱导解离,失去侧链的炔基-C7H6,形成碎片峰m/z 305.10,有碎片离子m/z 215.12,与准分子离子峰分子量相差179 Da,推测可能丢失1个葡萄糖基,失去-C6H11O6,形成碎片峰m/z 215.12,进一步失去侧链的CH2O、C2H4形成碎片峰m/z 185.09和m/z 159.09,结合对照品比对,化合物31鉴定为党参炔苷,其可能的质谱裂解途径见图3

    • 糠醛类化合物具有抗氧化、改善学习记忆、抗过敏、抗炎症反应等作用[12]。17号峰在HCD碰撞模式下,形成准分子离子峰[M+H]+ m/z 127.03532该离子峰,进而进行碰撞诱导解离,失去侧链的-H2O,形成m/z 109.03碎片峰,进一步失去侧链-CO,最终保留呋喃母核结构,形成碎m/z 81.03片峰,结合文献报道[13]和对照品比对,17号化合物鉴定为5-羟甲基糠醛,其可能的质谱裂解途径见图4

    • 三萜类化合物是茯苓中重要的活性成分,研究发现其对慢性肾小球肾炎具有保护作用[14]。本次鉴定出茯苓新酸B为三萜类化合物,分析其裂解规律。53号峰在HCD碰撞模式下,形成准分子离子峰[M-H] m/z 483.32191,该离子峰进一步裂解形成的碎片峰有m/z 465.02、m/z 409.03、m/z 365.03,根据其化学结构和二级碎片信息,推断m/z 465.02离子碎片峰是由准分子离子峰[M-H] m/z 483.32191,裂解失去-H2O所形成,m/z 409.03碎片峰是由准分子离子峰[M-H] m/z 483.32191失去1个侧链的丙酸基-C3H6O2所形成的,而m/z 365.03离子碎片峰是由m/z 409.03碎片峰进一步失去1分子CO2所形成。结合文献报道[15]和对照品比对,化合物53鉴定为茯苓新酸B,其可能的质谱裂解途径见图5

    • 加味参芪地黄汤作为经典方剂,在临床广泛应用于治疗慢性肾病、肾小球肾炎及前列腺疾病等[16-17],现代药理学研究发现其具有抑制炎症反应、抗病毒、抗肿瘤等活性[18-19],其药理方面的文献报道较多,而药效物质基础研究较少。

        本研究发现在超高效液相色谱分离上,虽然成分色谱峰没有完全分离开,但借助于LTQ-Orbitrap-MS/MS的高效分离、高选择性的特点,其可提供的准确的质量数信息[20],并结合特征碎片离子鉴别的分析策略,质谱数据采集采用正、负离子模式,在相对误差小于10 ppm的条件下,根据一级、多级质谱碎片及化合物精确质量数信息,ESI属于软电离,碎片较少,依据MS/MS图谱可获取有效的结构信息[21],同时结合对照品比对及文献报道,从而更为准确地鉴定加味参芪地黄汤中的化学成分。本次研究从加味参芪地黄汤中共鉴定出62个化学成分,包括13个芳香酸类、9个黄酮类、8个皂苷类成分、5个芳香胺类、3个酮酸类、2个酚类、1个芳香醌类及其他成分。对黄酮类、三萜苷类、糖醛类等代表性化合物的裂解规律进行了研究。黄酮类化合物的裂解方式多以失去侧链基团,最终形成保留色原酮母核的[M+H]+峰。本研究鉴定分析出5-羟甲基糠醛这一成分,是党参中重要的活性成分,文献报道显示5-羟甲基糠醛具有抗肿瘤活性,可降低细胞内ROS的含量,进而诱导细胞停滞在G0/G1期,激活DNA损伤介导的P53磷酸化、AKT通路和MAPKs通路,导致细胞凋亡,从而抑制肿瘤细胞的增殖[22]。鉴定出党参标志性成分党 参炔苷这一化合物,文献报道研究显示党参炔苷具有抗肿瘤活性,此外,党参提取物能提高前列腺素的表达水平[23]。鉴定出三萜类化合物茯苓新酸B,作为茯苓中重要的活性成分,茯苓酸可减轻微血管内皮细胞氧化损伤的作用,还可抗细胞凋亡及促进细胞增殖[24]

      本研究采用UPLC-LTQ-Orbitrap-MS/MS方法鉴定加味参芪地黄汤化学成分尚属首次,为后续的抗慢性肾病、肾小球肾炎及前列腺疾病的药效物质基础及作用机制提供重要的实验数据。

Reference (24)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return