-
脂质体是包封药物纳米载体的理想选择[1],它可以提高被包载物质溶解度,增强物质的稳定性,减少外周不良反应发生,且自身无毒。在肿瘤疾病治疗中,依赖高渗透长滞留(EPR)效应的假设,基于病变区域的组织结构、生理功能和正常组织间的差异,脂质体可使药物输送至肿瘤组织富集,更好地发挥治疗作用[2]。但是,基于EPR效应的纳米制剂在实体瘤内转运的靶向效率仍面临很多质疑[3],所有纳米颗粒(包括脂质体在内)仅有0.7%(中位数)的注射剂量被递送至实体瘤,面临脱颗粒困难、药物释放缓慢等问题[4]。因此在脂质体载体的研究中,针对内源性刺激因素pH[5]、氧化还原反应[6]和酶等[7],外源性刺激因素温度变化[8]、磁场[9]、光等[10],研究者开发出基于刺激响应以及具有主动运输功能的靶向脂质体,以期在目标部位高效、可控地释放运载药物,提高脂质体的靶向性并增强细胞毒性[11]。
HTML
[1] | PATTNI B S, CHUPIN V V, TORCHILIN V P. New developments in liposomal drug delivery[J]. Chem Rev,2015,115(19):10938-10966. |
[2] | PALIWAL S R, PALIWAL R, AGRAWAL G P, et al. Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin[J]. J Liposome Res,2016,26(4):276-287. |
[3] | WILHELM S, TAVARES A J, DAI Q, et al. Analysis of nanoparticle delivery to tumours[J]. Nat Rev Mater,2016,1(5):16014. |
[4] | PRABHAKAR U, MAEDA H, JAIN R K, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology[J]. Cancer Res,2013,73(8):2412-2417. |
[5] | LI M, SHI K, TANG X, et al. pH-sensitive folic acid and dNP2 peptide dual-modified liposome for enhanced targeted chemotherapy of glioma[J]. Eur J Pharm Sci,2018,124:240-248. |
[6] | XIA X L, YANG X Y, HUANG P, et al. ROS-responsive nanoparticles formed from RGD-epothilone B conjugate for targeted cancer therapy[J]. ACS Appl Mater Interfaces,2020,12(16):18301-18308. |
[7] | DE LA RICA R, AILI D, STEVENS M M. Enzyme-responsive nanoparticles for drug release and diagnostics[J]. Adv Drug Deliv Rev,2012,64(11):967-978. |
[8] | YU F, WU H, TANG Y, et al. Temperature-sensitive copolymer-coated fluorescent mesoporous silica nanoparticles as a reactive oxygen species activated drug delivery system[J]. Int J Pharm,2018,536(1):11-20. |
[9] | PODARU G, OGDEN S, BAXTER A, et al. Pulsed magnetic field induced fast drug release from magneto liposomes via ultrasound generation[J]. J Phys Chem B,2014,118(40):11715-11722. |
[10] | LUO D, LI N, CARTER K A, et al. Rapid light-triggered drug release in liposomes containing small amounts of unsaturated and porphyrin-phospholipids[J]. Small,2016,12(22):3039-3047. |
[11] | ELOY J O, PETRILLI R, TREVIZAN L N F, et al. Immunoliposomes: a review on functionalization strategies and targets for drug delivery[J]. Colloids Surf B Biointerfaces,2017,159:454-467. |
[12] | BRIEGER K, SCHIAVONE S, MILLER F J, et al. Reactive oxygen species: from health to disease[J]. Swiss Med Wkly,2012,142:w13659. |
[13] | INOUE M, SATO E F, NISHIKAWA M, et al. Mitochondrial generation of reactive oxygen species and its role in aerobic life[J]. Curr Med Chem,2003,10(23):2495-2505. |
[14] | LIOU G Y, STORZ P. Reactive oxygen species in cancer[J]. Free Radic Res,2010,44(5):479-496. |
[15] | MANDA G, ISVORANU G, COMANESCU M V, et al. The redox biology network in cancer pathophysiology and therapeutics[J]. Redox Biol,2015,5:347-357. |
[16] | PANIERI E, SANTORO M M. ROS homeostasis and metabolism: a dangerous liason in cancer cells[J]. Cell Death Dis,2016,7(6):e2253. |
[17] | SZATROWSKI T P, NATHAN C F. Production of large amounts of hydrogen peroxide by human tumor cells[J]. Cancer Res,1991,51(3):794-798. |
[18] | CHIANG Y T, YEN Y W, LO C L. Reactive oxygen species and glutathione dual redox-responsive micelles for selective cytotoxicity of cancer[J]. Biomaterials,2015,61:150-161. |
[19] | DU Y, HE W, XIA Q, et al. Thioether phosphatidylcholine liposomes: a novel ROS-responsive platform for drug delivery[J]. ACS Appl Mater Interfaces,2019,11(41):37411-37420. |
[20] | LOU J C, BEST M D. Reactive oxygen species-responsive liposomes via boronate-caged phosphatidylethanolamine[J]. Bioconjugate Chem,2020,31(9):2220-2230. |
[21] | NOYHOUZER T, L’HOMME C, BEAULIEU I, et al. Ferrocene-modified phospholipid: an innovative precursor for redox-triggered drug delivery vesicles selective to cancer cells[J]. Langmuir,2016,32(17):4169-4178. |
[22] | CLEGG A D, REES N V, KLYMENKO O V, et al. Marcus theory of outer-sphere heterogeneous electron transfer reactions: High precision steady-state measurements of the standard electrochemical rate constant for ferrocene derivatives in alkyl cyanide solvents[J]. J Electroanal Chem,2005,580(1):78-86. |
[23] | 卢光照, 侯 成, 钟延强, 等. 活性氧自由基响应给药系统研究进展[J]. 药学学报, 2017, 52(2):206-213. |
[24] | FUSE T, TAGAMI T, TANE M, et al. Effective light-triggered contents release from helper lipid-incorporated liposomes co-encapsulating gemcitabine and a water-soluble photosensitizer[J]. Int J Pharm,2018,540(1-2):50-56. |
[25] | ZHAO Z H, WANG W Q, LI C X, et al. Reactive oxygen species–activatable liposomes regulating hypoxic tumor microenvironment for synergistic photo/chemodynamic therapies[J]. Adv Funct Mater,2019,29(44):1905013. |
[26] | CARTER K A, LUO D, RAZI A, et al. Sphingomyelin liposomes containing porphyrin-phospholipid for irinotecan chemophototherapy[J]. Theranostics,2016,6(13):2329-2336. |