Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code

KANG Ye, ZHOU Mi, YAN Lan. Progress of the drug efflux mechanisms underlying fungi multidrug resistance[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(6): 485-488. doi: 10.3969/j.issn.1006-0111.2016.06.002
Citation: KANG Ye, ZHOU Mi, YAN Lan. Progress of the drug efflux mechanisms underlying fungi multidrug resistance[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(6): 485-488. doi: 10.3969/j.issn.1006-0111.2016.06.002

Progress of the drug efflux mechanisms underlying fungi multidrug resistance

doi: 10.3969/j.issn.1006-0111.2016.06.002
  • Received Date: 2015-06-29
  • Rev Recd Date: 2016-04-28
  • The multidrug resistance (MDR), characterized by the simultaneous acquisition of resistance to chemically and structurally different drugs, has caused antifungal treatment failure. This review focused on recent progresses in understanding of the multidrug resisitance associated drug efflux transporter superfamily in Saccharomyces cerevisiae, the opportunistic fungal pathogens Candida albicans, Candida glabrata, and Aspergillus fumigates, along with the mechanisms underlying efflux pump and the regulatory networks involved. Investigation of these mechanisms and their impact on drug resistance may lead to strategies to overcome fungal multidrug resistance and improvement of drug efficacy.
  • [1] Morschhauser J. Regulation of multidrug resistance in pathogenic fungi[J]. Fungal Genet Biol,2010,47(2):94-106.
    [2] Ernst R, Kueppers P, Stindt J, et al. Multidrug efflux pumps:substrate selection in ATP-binding cassette multidrug efflux pumps——first come, first served?[J]FEBS J,2010,277(3):540-549.
    [3] Cannon RD, Lamping E, Holmes AR, et al. Efflux-mediated antifungal drug resistance[J]. Clin Microbiol Rev,2009,22(2):291-321.
    [4] Prasad R, Goffeau A. Yeast ATP-binding cassette transporters conferring multidrug resistance[J]. Annu Rev Microbiol,2012,66:39-63.
    [5] Simonics T, Kozovska Z, Michalkova-Papajova D, et al. Isolation and molecular characterization of the carboxy-terminal pdr3 mutants in Saccharomyces cerevisiae[J]. Curr Genet,2000,38(5):248-255.
    [6] Bosis E, Salomon D, Ohayon O,et al. Ssz1 restores endoplasmic reticulum-associated protein degradation in cells expressing defective cdc48-ufd1-npl4 complex by upregulating cdc48[J]. Genetics,2010,184(3):695-706.
    [7] Ducett JK, Peterson FC, Hoover LA, et al. Unfolding of the C-terminal domain of the J-protein Zuo1 releases autoinhibition and activates Pdr1-dependent transcription[J]. J Mol Biol,2013,425(1):19-31.
    [8] Prunuske AJ, Waltner JK, Kuhn P, et al. Role for the molecular chaperones Zuo1 and Ssz1 in quorum sensing via activation of the transcription factor Pdr1[J]. Proc Natl Acad Sci USA,2012,109(2):472-427.
    [9] Kolaczkowska A, Manente M, Kolaczkowski M, et al. The regulatory inputs controlling pleiotropic drug resistance and hypoxic response in yeast converge at the promoter of the aminocholesterol resistance gene RTA1[J]. FEMS Yeast Res,2012,12(3):279-292.
    [10] Teixeira MC, Dias PJ, Simoes T, et al. Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1[J]. Biochem Biophys Res Commun,2008,367(2):249-255..
    [11] Gulshan K, Schmidt JA, Shahi P, et al. Evidence for the bifunctional nature of mitochondrial phosphatidylserine decarboxylase:role in Pdr3-dependent retrograde regulation of PDR5 expression[J]. Mol Cell Biol,2008,28(19):5851-5864.
    [12] Teixeira MC, Cabrito TR, Hanif ZM, et al. Yeast response and tolerance to polyamine toxicity involving the drug:H+ antiporter Qdr3 and the transcription factors Yap1 and Gcn4[J]. Microbiology,2011,157(Pt 4):945-956.
    [13] Azie N, Neofytos D, Pfaller M, et al. The PATH (Prospective Antifungal Therapy) Alliance ® registry and invasive fungal infections:update 2012[J]. Diagn Microbiol Infect Dis,2012,73(4):293-300.
    [14] Coste A, Turner V, Ischer F, et al. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans[J]. Genetics,2006,172(4):2139-2156.
    [15] Mandal A, Kumar A, Singh A, et al. A key structural domain of the Candida albicans Mdr1 protein[J]. Biochem J,2012,445(3):313-322.
    [16] Shah AH, Singh A, Dhamgaye S, et al. Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans[J]. Biochem J,2014,460(2):223-235.
    [17] Li R, Kumar R, Tati S, et al. Candida albicans flu1-mediated efflux of salivary histatin 5 reduces its cytosolic concentration and fungicidal activity[J]. Antimicrob Agents Chemother,2013,57(4):1832-1839.
    [18] Pappas PG, Kauffman CA, Andes D, et al. Clinical practice guidelines for the management of candidiasis:2009 update by the Infectious Diseases Society of America[J]. Clin Infect Dis,2009,48(5):503-535.
    [19] Torelli R, Posteraro B, Ferrari S, et al. The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata[J]. Mol Microbiol,2008,68(1):186-201.
    [20] Paul S, Schmidt JA, Moye-Rowley WS. Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata[J]. Eukaryot Cell,2011,10(2):187-197.
    [21] Brun S, Dalle F, Saulnier P, et al. Biological consequences of petite mutations in Candida glabrata[J]. J Antimicrob Chemother,2005,56(2):307-314.
    [22] Costa C, Pires C, Cabrito TR, et al. Candida glabrata drug:H+ antiporter CgQdr2 confers imidazole drug resistance, being activated by transcription factor CgPdr1[J]. Antimicrob Agents Chemother,2013,57(7):3159-3167.
    [23] Costa C, Nunes J, Henriques A, et al. Candida glabrata drug:H+ antiporter CgTpo3(ORF CAGL0I10384g):role in azole drug resistance and polyamine homeostasis[J]. J Antimicrob Chemother,2014,69(7):1767-1776.
    [24] Denning DW, Pleuvry A, Cole DC. Global burden of allergic bronchopulmonary aspergillosis with asthma and its complication chronic pulmonary aspergillosis in adults[J]. Med Mycol,2013,51(4):361-370.
    [25] Pound MW, Townsend ML, Dimondi V, et al. Overview of treatment options for invasive fungal infections[J]. Med Mycol,2011,49(6):561-580.
    [26] Snelders E, van der Lee HA, Kuijpers J, et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism[J]. PLoS Med,2008,5(11):e219.
    [27] Chowdhary A, Kathuria S, Xu J, et al. Clonal expansion and emergence of environmental multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR(3)(4)/L98H mutations in the cyp51A gene in India[J]. PloS one,2012,7(12):e52871.
    [28] Bueid A, Howard SJ, Moore CB, et al. Azole antifungal resistance in Aspergillus fumigatus:2008 and 2009[J]. J Antimicrob Chemother,2010,65(10):2116-2118.
    [29] Escribano P, Pelaez T, Munoz P, et al. Is azole resistance in Aspergillus fumigatus a problem in Spain?[J] Antimicrob Agents Chemother,2013,57(6):2815-2820.
    [30] Kovalchuk A, Driessen AJ. Phylogenetic analysis of fungal ABC transporters[J]. BMC genomics,2010,11:177.
    [31] Rajendran R, Mowat E, McCulloch E, et al. Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity[J]. Antimicrob Agents Chemother,2011,55(5):2092-2097.
    [32] Bowyer P,Mosquera J,Anderson M,et al.Identification of novel genes conferring altered azole susceptibility in Aspergillus fumigatus[J].FEMS Microbiol Lett,2012,332(1):10-19.
    [33] Qiao J, Liu W, Li R. Truncated Afyap1 attenuates antifungal susceptibility of Aspergillus fumigatus to voriconazole and confers adaptation of the fungus to oxidative stress[J]. Mycopathologia,2010,170(3):155-160.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2945) PDF downloads(1977) Cited by()

Related
Proportional views

Progress of the drug efflux mechanisms underlying fungi multidrug resistance

doi: 10.3969/j.issn.1006-0111.2016.06.002

Abstract: The multidrug resistance (MDR), characterized by the simultaneous acquisition of resistance to chemically and structurally different drugs, has caused antifungal treatment failure. This review focused on recent progresses in understanding of the multidrug resisitance associated drug efflux transporter superfamily in Saccharomyces cerevisiae, the opportunistic fungal pathogens Candida albicans, Candida glabrata, and Aspergillus fumigates, along with the mechanisms underlying efflux pump and the regulatory networks involved. Investigation of these mechanisms and their impact on drug resistance may lead to strategies to overcome fungal multidrug resistance and improvement of drug efficacy.

KANG Ye, ZHOU Mi, YAN Lan. Progress of the drug efflux mechanisms underlying fungi multidrug resistance[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(6): 485-488. doi: 10.3969/j.issn.1006-0111.2016.06.002
Citation: KANG Ye, ZHOU Mi, YAN Lan. Progress of the drug efflux mechanisms underlying fungi multidrug resistance[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(6): 485-488. doi: 10.3969/j.issn.1006-0111.2016.06.002
Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return