-
辅酶Q10(CoQ10)是生物体内广泛存在的脂溶性醌类化合物,作为细胞中的辅酶,其具有重要且广泛的药理作用[1],目前主要用于预防心血管疾病和增强免疫力等方面[2-4]。CoQ10分子量高、水溶性低,口服生物利用度低,注射剂稳定性差,对光十分敏感[5],越来越多的研究表明静脉注射乳剂是其理想载体[6]。
高油量可溶解更大量药物,对极难溶性药物的优势更为明显。但是目前对于含药静脉注射乳剂的研究中,油的质量体积比通常为10%[7],更高油量的研究相对较少。基于营养型脂肪乳剂的长期临床应用实践,高油量静脉注射乳剂的安全性已得到证实,具有广阔的发展空间和巨大的市场价值。同时乳剂不能经受冷冻也长期困扰着研究者们,卵磷脂与含亲水链段的乳化剂组合及恰当的油黏度是解决此问题的关键。本研究在乳剂经典处方中添加单唾液酸四己糖神经节苷脂(GM1),GM1含有一个较大的亲水头基,具有两亲性,利用其特殊的结构优势来解决乳剂不耐受冻融的难题。本研究旨在制备高油量、高载药量且耐冻融循环的CoQ10乳剂,建立其HPLC含量分析方法,并进行物理化学性质表征和稳定性评价,以弥补CoQ10现有制剂的不足,为高油量含药静脉注射乳剂的研究开发提供参考依据。
-
BS124s电子分析天平(德国Sartorius公司);DF-101S 集热式恒温加热磁力搅拌器(巩义市英峪予华仪器厂);高速分散机(德国IKA T18 ULTRA TURRAX);M-110L型微射流仪(美国Microfluidics公司);垂直旋转自动高压灭菌器(沈阳天美达科学仪器有限公司);Nicomp-380 激光粒度测定仪(美国Particle Sizing Systems公司);PHS-2C型数字显示酸度计(上海伟业仪器厂);CS120GXL型超速离心机(日本Hitachi公司);UV228紫外-可见光检测器、P230高压恒流泵(大连依利特分析仪器有限公司);高精度全自动交流稳压器(浙江中川电气科技有限公司);AT-130柱温箱(天津市金洲科学仪器有限公司);人工气候箱(德国MMM公司)。
CoQ10(广东润和生物科技有限公司,批号:2017052405,纯度
$\geqslant $ 98%),中链油(MCT,辽宁铁岭北亚药用油有限公司,注射级),大豆油(LCT,辽宁铁岭北亚药用油有限公司,注射级),蛋黄卵磷脂(E80,德国Lipoid公司,注射级),GM1(重庆寰瑞生物制药有限公司,注射级),维生素E(VE,BASF维生素有限公司),甘油(湖南尔康制药有限公司,注射级),聚乙二醇12-羟基硬脂酸酯(HS15,德国BASF公司,注射级),葡萄糖注射液(昆明南疆制药有限公司),氯化钠注射液(吉林省都邦药业股份有限公司),灭菌注射用水(石家庄四药有限公司),其他试剂均为色谱纯。 -
油种类对乳剂的稳定性至关重要,LCT和MCT单独应用时均存在各自的缺陷,且乳剂不能经受冷冻,因此将二者联合应用,质量比为1∶1[8]。结合静脉注射乳剂经典处方组成,CoQ10乳剂按如下方法制备[9]。称取质量体积比为30% LCT/MCT (质量比1∶1)、2% E80、0.05% VE和2% CoQ10于60 ℃水浴中加热熔融、分散均匀。2.25%甘油和0.2% GM1溶解于适量重蒸水中,60 ℃加热搅拌至完全溶解。待两相温度平衡后,高剪切搅拌下(8000 r/min)将水相加入油相中,完全加入后继续分散5 min,即得初乳。待初乳冷却至室温后,加重蒸水定容至处方量。将初乳转移至微射流仪中,经6 000 psi均质3个循环,14 000 psi均质6个循环减小粒径。依次过0.80和0.45 μm微孔滤膜。将所得乳剂分装,充氮气,121 ℃灭菌8 min。
-
色谱柱:Betasil C18(200 mm×4.6 mm,5 μm,大连依利特);流动相:甲醇-无水乙醇(体积比20∶80);柱温:35 ℃;流速:1.0 ml/min;检测波长:275 nm;进样量:20 μl。
-
精密称定CoQ10 25.0 mg,置于25 ml量瓶中,用无水乙醇溶解并稀释至刻度,摇匀,即得浓度为1000.0 μg/ml的CoQ10对照品储备液。精密移取CoQ10乳剂0.1 ml,置于10 ml量瓶中,加入无水乙醇破坏乳剂并稀释至刻度,摇匀,过0.45 μm微孔滤膜,即得CoQ10乳剂样品溶液。
-
取CoQ10乙醇溶液20 μl进样,记录色谱图。将空白乳和CoQ10乳剂分别加适量无水乙醇破乳,经0.45 μm微孔滤膜滤过,取各续滤液20 μl进样,记录色谱图。在此色谱条件下辅料和溶剂对药物测定无干扰,见图1。
-
精密量取CoQ10对照品储备液适量,用无水乙醇稀释成浓度为10.0、25.0、50.0、100.0、150.0、200.0、250.0 μg/ml的系列标准溶液,过0.45 μm微孔滤膜,各取20 μl进样分析,记录峰面积A。以A对浓度C(μg/ml)进行线性回归,得线性方程为A=15738 C- 12584,r=0.999 8。结果表明CoQ10在10.0 ~ 250.0 μg/ml范围内线性关系良好。
-
分别取低、中、高浓度(25.0、100.0、200.0 μg/ml)的CoQ10对照品溶液,于2、4、6、8、10 h各测定一次,以峰面积求算日内精密度;于1、2、3、4、5天各测定一次,以峰面积求算日间精密度。结果表明RSD均小于2%,方法精密度良好。
-
取“2.2.2”项下CoQ10乳剂样品溶液室温下避光放置,于0、2、4、6、8、10、24 h分别取20 μl进样分析,记录峰面积。计算得各时间点峰面积为0 h测定值的100.45%、101.23%、99.27%、100.26%、99.34%及100.06%,表明样品溶液在24 h内稳定。
-
按“2.2.2”项下方法平行制备6份CoQ10乳剂样品溶液。另精密称定CoQ10适量,加乙醇溶解并稀释成浓度为200.0 μg/ml的溶液,摇匀,过0.45 μm微孔滤膜,即得对照品溶液。精密量取样品和对照品溶液20 μl进样,记录峰面积。外标法计算得样品中药物浓度分别为201.3、199.6、198.2、200.7、199.2、198.4 μg/ml,RSD为0.62%,表明该方法重复性良好。
-
精密移取CoQ10对照品储备液0.25、1.0和2.0 ml各3份于10 ml量瓶中,分别加入0.1 ml空白乳,再加乙醇破坏乳剂并稀释至刻度,摇匀,过0.45 μm微孔滤膜。将上述各溶液进样分析,记录峰面积,按“2.2.4”项下标准曲线方程求得药物浓度,计算回收率。结果表明25、100和200 μg/ml CoQ10样品溶液的平均回收率分别为100.04%、99.63%和100.49%,RSD分别为0.29%、0.80%和0.52%。
-
按照“2.1”项下的处方工艺制备CoQ10乳剂,观察其外观。CoQ10乳剂外观为淡黄色均匀乳状液体,无油滴、不溶性成分或块状团聚物,见图2。
-
取CoQ10乳剂适量,用蒸馏水稀释至适宜浓度,采用激光散射粒径测定仪测定3批CoQ10乳剂的粒径、粒径分布和Zeta电位。测定波长为632.8 nm,测定角为90°,测定温度为25 ℃。结果显示3批样品的平均粒径为(239.5±0.8)nm,未见大于5 μm的粒子,符合静脉注射液的要求;粒径为(0.300±0.011)nm;Zeta电位为(−32.28±2.04)mV。同时测定了CoQ10乳剂的pH值为(5.86±0.02),符合注射剂质量要求。
-
精密量取CoQ10 乳剂0.1 ml(含CoQ10约2 mg)于10 ml量瓶中,加乙醇溶解并稀释至刻度,摇匀,过0.45 μm微孔滤膜,取20 μl进样,记录色谱图。另取相同浓度的药物溶液,同法测定。外标法计算乳剂中CoQ10的含量,最终测得3批供试品的标示量百分比分别为99.18 %、101.50 %和101.08%,RSD为1.24%。
-
采用超速离心法测定CoQ10乳剂的包封率。乳剂经过超速离心后,油相、乳化层和水相彻底分开,将油相与乳化层中的药物量合并考虑,通过测定水相中的药物量来计算包封率。精密移取CoQ10乳剂0.1 ml至10 ml量瓶中,加入乙醇稀释至刻度,混匀,过0.45 μm微孔滤膜,取续滤液进行HPLC检测,外标法计算药物总量。移取CoQ10乳剂4 ml至超速离心管中,温度为4 ℃,以50 000 r/min离心2 h。精密移取下层液体1.0 ml至10 ml量瓶中,乙醇稀释至刻度,混匀,过0.45 μm微孔滤膜,取续滤液进行HPLC检测,外标法计算水相中药物含量。按上述方法测得3批CoQ10乳剂的平均包封率为(98.5%±1.1)%,表明药物绝大部分存在于制剂的油相和油水界面层中。
-
将CoQ10乳剂分装于西林瓶,充氮气密封,121 ℃灭菌8 min。参考《化学药物稳定性研究技术指导原则》中涉及乳剂冻融试验的方法,将灭菌后样品在−20 ℃冷冻48 h,40 ℃放置48 h为一个循环,共循环3次,每完成一个循环测定粒径。结果显示3批CoQ10乳剂均具有良好的灭菌稳定性和冻融稳定性,见表1。
表 1 CoQ10乳剂的灭菌和冻融试验结果
批次 粒径(l/nm) 灭菌前 灭菌后 冻融1次 冻融2次 冻融3次 1 241.4 239.6 255.7 263.0 271.2 2 238.5 240.0 252.6 265.9 272.3 3 240.2 238.7 259.0 263.5 269.1 -
以平均粒径和粒径分布为指标,考察CoQ10乳剂在5%葡萄糖注射液和0.9%氯化钠注射液中的稀释稳定性。将制剂用上述稀释介质进行50倍稀释,于0、2、4、6、8、10、12、24 h取样,测定粒径和粒径分布。结果见图3,制剂经5%葡萄糖注射液和0.9%氯化钠注射液稀释后放置24 h,粒径和粒径分布均比较稳定,稀释稳定性良好。
-
CoQ10结构中含有大量不饱和双键,是典型的光敏性药物。以药物含量为主要指标,考察不同因素对CoQ10乳剂光解速率的影响。将样品分装于透明西林瓶,置于人工气候箱中,于(25±2) ℃、(4500±500)lux条件下进行强制光解试验,调整样品与光源的距离约10 cm,使受光均匀,分别于0、24、48、72、96、120 h取样,HPLC法测定药物含量。绘制光降解曲线,并进行反应级数拟合,求出光解半衰期(t1/2)。
-
将适量CoQ10用无水乙醇溶解并稀释,即得CoQ10溶液。称取0.25% CoQ10和3% HS15于55 ℃水浴中加热熔融,分散均匀。搅拌状态下加入预热至相同温度的注射用水,搅拌10 min,即得CoQ10胶束。制备相同药物浓度(1 mg/ml)的CoQ10溶液、胶束和乳剂进行光解试验。光解曲线见图4,反应级数均为一级。对CoQ10的光保护作用由强到弱依次为乳剂、胶束和溶液,t1/2分别为239.0、50.6和29.4 h。
-
将CoQ10乳剂(20 mg/ml)分别稀释0、2、4、10、20倍进行光解试验。光解曲线见图5,反应级数均为一级,稀释倍数由低到高,t1/2分别为533.1、495.0、288.8、115.5和62.4 h。
-
分别制备0.1%(1 mg/ml)和2.0%(20 mg/ml)载药量的CoQ10乳剂,进行光解试验。光解曲线见图6,反应级数均为一级,0.1%和2.0%载药量乳剂的t1/2分别为233.5和533.1 h。结果表明,光解速率与载药量呈反比,载药量越大,光解速率越小。
-
CoQ10乳剂需在冰箱(2~8 ℃)内储存,因此以下稳定性实验参照《中国药典》2020版中对温度特别敏感药物制剂的实验条件进行。
-
将CoQ10乳剂分装于棕色西林瓶中,充氮气、密封,在(25±2) ℃、(4 500±500) lux条件下,于第0、5、10天取样,以制剂外观、含量、粒径、pH为评价指标,考察CoQ10乳剂的光照稳定性。结果(见表2)表明3批制剂的含量和pH略有下降,提示该乳剂需避光制备与储存。
表 2 CoQ10乳剂的光照稳定性试验结果
天数(t/d) 外观 含量(%) 粒径(l/nm) pH 0 良好 100.4 243.2 5.82 5 良好 97.7 239.8 5.79 10 良好 93.6 241.4 5.70 -
将CoQ10乳剂分装于西林瓶中,充氮气、密封,在(40±2) ℃条件下避光放置,于第0、5、10天取样,以制剂外观、含量、粒径、pH为评价指标,考察CoQ10乳剂在高温条件下的稳定性。结果(见表3)显示3批制剂的含量和pH随时间延长呈下降趋势。
表 3 CoQ10乳剂在40 ℃的稳定性试验结果
天数(t/d) 外观 含量(%) 粒径(l/nm) pH 0 良好 100.4 243.2 5.82 5 良好 100.2 245.2 5.57 10 良好 99.5 245.0 5.21 -
取3批CoQ10乳剂分装于西林瓶中,充氮气、密封,在(25±2) ℃、相对湿度60%的条件下避光放置6个月,分别于第0、1、2、3、6个月取样,观察制剂外观,测定含量、粒径和pH值。结果表明,CoQ10乳剂在(25±2) ℃条件下避光放置6个月,各指标均在合格范围内,稳定性良好。
-
取3批CoQ10乳剂分装于西林瓶中,充氮气、密封,在(5±3) ℃条件下避光放置12个月,分别于第0、3、6、9、12个月取样,观察制剂外观,测定含量、粒径和pH值。结果表明,CoQ10乳剂在(5±3) ℃条件下避光放置12个月,各指标均在合格范围内,稳定性良好。
-
乳剂冷冻期间冰晶的形成会破坏乳化膜,从而引发小油滴聚集成大油滴,甚至导致浮油、破乳。解决乳剂冻融问题的主要手段为油相和乳化剂的合理选择。其一是油相要有恰当的黏度,将LCT与MCT联合应用既能克服单独使用存在的问题,又可取长补短,有利于乳剂冻融稳定性的提高。其二,牢固的乳化膜可增强乳剂的冻融稳定性,有研究[11]发现卵磷脂与含亲水链段的乳化剂组合对提高冻融稳定性有至关重要的作用。本实验CoQ10乳剂处方组成中的GM1是一种内源性糖脂,具有生物可降解、无免疫原性等特点[12],近年来已有研究将GM1应用于乳剂、脂质体和胶束的制备[12-14]。GM1是两亲性物质,可与卵磷脂形成复合乳化膜,增加膜的韧性。其结构中的较大亲水头基形成的空间立体位阻,及结构中唾液酸的荷负电对提高乳剂的冻融稳定性也至关重要。此外,在水相中加入含羟基的醇类或糖类(冻融保护剂),可以增加水相黏度,减慢冰晶的生长速度和程度,增强乳剂的冻融稳定性。
-
CoQ10的光解具有浓度依赖性,起始浓度高时光解速率相对较慢,但当制剂稀释倍数增加时,其透光性大大增加,光解反应加剧。对于微粒给药系统,粒径是一个重要参数,同时其光解具有一定的粒径依赖性。本研究所制备的乳剂属于高油量低磷脂含量,与普通乳剂相比粒径较大,因此光稳定性要更好。推测原因为光不容易穿透大粒径制剂的内部,降低了药物的曝光率;此外,粒径大时粒子的曲率较低,比表面积小,因此曝光机会少,越不易光解[10]。本实验证明了将CoQ10包封入乳剂中可减少其曝光机会,对药物能起到一定的保护作用。但CoQ10乳剂仍需低温氮气环境下保存,使用过程中避光处理,以减少光解的概率。
The improvement of formulation process and quality evaluation of coenzyme Q10 emulsion
-
摘要:
目的 对处方工艺改进的辅酶Q10乳剂进行质量评价,并建立其含量测定方法。 方法 制备高油量辅酶Q10乳剂,利用HPLC建立其含量测定与有关分析方法,并进行理化性质表征,测定包封率,考察灭菌、冻融和稀释稳定性,进行强光降解试验以及影响因素、加速和长期试验。 结果 辅酶Q10乳剂粒径、Zeta电位、pH值、含量和包封率分别为(239.5±0.8)nm、(−32.28±2.04)mV、(5.86±0.02)、(100.59±1.24)%和(98.5±1.1)%,灭菌、冻融和稀释稳定性均良好。乳剂光解速率与稀释倍数呈正比,与载药量呈反比。辅酶Q10乳剂需避光制备、低温储存;(40±2) ℃避光放置10天,pH值下降0.61;加速和长期试验稳定性良好。 结论 高油量辅酶Q10乳剂符合静脉注射液的质量要求,稳定性良好。 Abstract:Objective To evaluate the quality of coenzyme Q10 emulsion with improved formulation and technology and establish an assay method. Methods Coenzyme Q10 emulsion with a high oil concentration was prepared and analyzed by HPLC. The physical and chemical properties of the emulsion were characterized, and the entrapment efficiency was determined. The stability of sterilization, freeze-thaw and dilution was investigated. The photodegradation test as well as the influencing factors, acceleration and long-term stability tests were carried out. Results The particle size, Zeta potential, pH value, content and entrapment efficiency of coenzyme Q10 emulsion were (239.5±0.8) nm、(−32.28±2.04) mV、(5.86±0.02)、 (100.59±1.24) % and (98.5±1.1) %, respectively. The stability of sterilization, freeze-thaw and dilution was good. The photolysis rate was directly proportional to the dilution ratio and inversely proportional to the drug loading. Coenzyme Q10 emulsion should be prepared in light free environment and stored at a low temperature. The pH value dropped 0.61 when it was kept in darkness at (40±2) ℃ for 10 days. It exhibited good stability both in the accelerated and long-term test. Conclusion The physicochemical properties of coenzyme Q10 emulsion with a high oil concentration meet the quality requirements for intravenous injection with good stability. -
Key words:
- high oil content /
- coenzyme Q10 /
- emulsion /
- physicochemical property /
- stability
-
0. 前言
肥胖是因体内脂肪过度蓄积导致健康损害的一种机体状态。目前已证实与肥胖相关联的疾病多达21种,广泛涉及心血管、消化、呼吸、神经、肌肉骨骼等系统相关疾病甚至传染性疾病[1]。根据2023年3月世界肥胖联盟(WOF)公布的《2023世界肥胖地图》,预计到2035年,肥胖或超重(WHO标准BMI≥25 kg/m2)率将达到51%,引起的经济损失超过4万亿美元[2]。中国同样面临肥胖发病率逐年增高的严峻问题,根据最新报道,按照中国人的BMI分级(BMI≥24 kg/m2),我国目前已有34.8%的人超重,14.1%的人肥胖[3]。而我国上市的关于肥胖的治疗药物却屈指可数,自2007年脂肪酶抑制剂奥利司他获批以来,只有胰高血糖素样肽-1(GLP-1)受体激动剂利拉鲁肽和贝纳鲁肽于2023年7月获批超重(肥胖)适应证[4]。但这两类药物仍存在各自的弊端:奥利司他因严重脂肪泻导致部分患者不耐受,且因减肥效果有限而不被推荐用于合并并发症的肥胖治疗[5];利拉鲁肽和贝纳鲁肽减肥效果优异[6],但需注射给药且价格昂贵,近期还有报道称此类药物胃肠道不良反应远比其公布的要严重[7],并有可能增加肠梗阻风险,甚至使少数使用者产生自杀念头[8]。因此,研发可有效治疗肥胖且不良反应小的药物对治疗肥胖、减少并发症具有重要的意义。
研究人员前期发现,脂肪因子血清类粘蛋白(ORM)可作用于下丘脑瘦素受体,抑制摄食并调控能量平衡[9],是潜在的减重药物研发靶点(专利号:ZL201510230870.2)。但ORM为高度糖基化的大分子蛋白质,制备困难且需注射给药,限制了其药物开发前景。研究人员前期筛选到一个全新小分子化合物HMS-01,该化合物由大环内酯类抗菌药红霉素改造而来,为一种未上市的在研新药,可显著升高ORM并降低肥胖小鼠体质量,且具有可经消化道用药、无抗菌活性的特征,有望为药物治疗肥胖开辟新赛道。
根据创新药物临床前研究的国际国内指导原则[10-11],新药上市前需通过药效学和毒理学研究评估药物的有效性和安全性,其中,遗传毒性研究是毒理学研究的重要部分。遗传毒性是指化合物能直接或间接损伤生物体遗传物质,造成基因改变或突变,危及生物体及其后代健康。近年来,因具有致突变性而引起的药品召回事件时有发生[9]。本研究通过鼠伤寒沙门氏菌回复突变试验(Ames试验)对该化合物的遗传毒性进行实验探究,以期为创新药物的遗传安全性及其临床前毒理学评估提供支持。
1. 实验材料
1.1 受试样品及对照品
受试样品:HMS-0(西安秦申嘉合药物研究有限公司,批号20190127,纯度98%)。阴性对照品:二甲基亚砜(DMSO,Sigma-aldrich,CAS:67-68-5)。阳性对照品:吖啶诱变剂ICR-191(Sigma-aldrich,CAS:17070-45-0)、2-硝基芴(Sigma-aldrich,CAS:607-57-8)、叠氮钠(Sigma-aldrich,CAS:26628-22-8)、甲基磺酸甲酯(Sigma-aldrich,CAS:66-27-3)、2-氨基蒽(Sigma-aldrich,CAS:613-13-8)。
1.2 主要试剂及配制方法
营养肉汤(赛默飞,CM0067);磷酸盐缓冲液(生工生物);顶层琼脂培养基(Solarbio,货号:LA3080) ;底层培养基(Solarbio,货号:3090);S9混合液溶剂(按照180 ml试验用量配制):氯化钾(生工生物,CAS:7447-40-7)6.6 mmol、氯化镁(生工生物,CAS:7791-18-6)1.6 mmol、葡糖-6-磷酸(Sigma-aldrich,CAS:3671-99-6)1 mmol、辅酶Ⅱ(Sigma-aldrich,CAS:24292-60-2)0.8 mmol、0.2 mol/L磷酸盐缓冲液(20×PBS缓冲液,Solarbio,货号:P1032)120 ml、去离子水定容至180 ml;S9混合液: 代谢活化系统S9是经苯巴比妥/β-萘黄酮诱导的雄性SD大鼠肝匀浆上清液制备而成,购自Molecular Toxicology,使用前与S9溶剂按照1∶9(V/V)的比例配制。
1.3 主要仪器设备
全自动 Ames 实验仪(北京慧荣和科技有限公司,型号:HRH-AMES116);全自动菌落分析仪(杭州泽析生物科技有限公司,型号:DTS3);倒置显微镜[徕卡贸易(上海)有限公司,型号:Leica DMi8 M/C/A]。
1.4 试验菌株
此次试验所使用的组氨酸营养缺陷型(his−)鼠伤寒沙门氏菌TA97a、TA98、TA100、TA102和TA1535,购自Molecular Toxicology公司,符合实验要求。
2. 方法
根据毒理学研究的国际标准[12-13],设计制定Ames试验以检测受试药物HMS-01的遗传毒性。Ames试验亦称细菌回复突变实验,是利用伤寒沙门氏菌具有回复突变的特性,以鉴定受试物是否具有致突变性的一种试验方法。his−鼠伤寒沙门氏菌,因不能自主合成组氨酸而不能在缺乏组氨酸的培养基上生长,但在外界致突变因素的作用下可突变为能自主合成组氨酸的原养型沙门氏菌,从而能在无组氨酸的培养基上正常生长。因此,可通过观测其经受试物作用后,在无组氨酸培养基上的菌落生长情况来判定受试物是否具有致突变毒性。
试验结果要求应满足以下条件:①阴性对照组的回复突变菌落均数在历史阴性/溶媒对照范围内;②阳性对照组的回复突变菌落均数为其对应的阴性对照组的3倍以上;③污染平皿数不超过平皿总数的5%。
2.1 试验菌鉴定及扩增培养
5种试验菌(TA97a、TA98、TA100、TA102、TA1535)应具备表1所示的特性,因此于实验前进行如下生物学特性鉴定 : his−鉴定、脂多糖屏障缺陷(rfa突变)鉴定、氨苄青霉素抗性(菌株R 因子缺失)鉴定、紫外线敏感性(ΔuvrB突变)鉴定、四环素(pAQ1)抗性的鉴定、自发回变菌落数(his+)测定 、对阳性诱变剂的回变敏感性测定,以确定试验菌株符合试验标准。
表 1 各试验菌株生物学特性菌株名称 组氨酸
缺陷脂多糖
屏障缺损R因子
缺失ΔuvrB
突变抗四
环素自发回
落数TA97a + + + + − 90~180 TA98 + + + + − 30~50 TA100 + + + + − 120~200 TA102 + + + − + 240~320 TA1535 + + − + − 10~35 取鉴定合格试验菌分别接种于装有7 ml营养肉汤培养基的试管中,于(35±2) ℃、(120±25) r/min条件下在空气恒温震荡器中扩增培养16~18 h,使用酶标仪检测菌液光密度并估算活菌浓度,待浓度达1×109 个/ml以上时可用于试验。
2.2 试验分组
设置6个HMS-01实验组,最高剂量为HMS-01 5 000 μg/皿,其下等比稀释设置5个剂量组分别为1 666.7、555.6、185.2、61.7、20.6 μg/皿。除此之外,另设置空白对照组及各菌对应的阳性对照组,分组情况见表2。
表 2 各试验菌对应的阳性诱变剂及剂量代谢活化 菌株名称 阳性诱变剂 剂量(μg/皿) −S9 TA97a ICR-191 1 TA98 2-硝基芴 1 TA100 叠氮钠 2 TA102 甲基磺酸甲酯 1.3 TA1535 叠氮钠 2 +S9 TA97a 2-氨基蒽 3 TA98 2-氨基蒽 3 TA100 2-氨基蒽 3 TA102 2-氨基蒽 30 TA1535 2-氨基蒽 3 2.3 平板渗入法
用全自动Ames实验仪进行试验,即2 ml融溶状态下的顶层琼脂培养基与下列物质混合:0.5 ml S9混合液或0.5 ml磷酸盐缓冲液、0.1 ml对应受试药品、0.1 ml扩增菌液,迅速混匀,室温静置,待平皿凝固后倒置于(37±1) ℃培养箱内培养48~72 h。各组共设置3个平行皿,重复试验1次。
2.4 试验结果观察及判定
培养结束后肉眼或显微镜下观察各皿的受试药品是否有析出以及背景菌斑的生长情况,并计数各平行皿的回变菌落数。每个组分别求均值,并将结果以(
$ \bar{x}\pm s $ )的方式列出,各组平行数表示为$ n $ 。根据中国食品药品检定研究院发布的《细菌回复突变试验技术指导原则(征求意见稿)》制定的结果判断标准,对于TA97a、TA98、TA100及TA102,其诱导的回复突变菌落均数大于各自阴性对照组的2倍,且具有浓度依赖性及可重现性,即可判定为阳性结果;对于TA1535,其诱导的回复突变菌落均数高出各自阴性对照组的3倍,且具有浓度依赖性及可重现性,结果可判定为阳性。受试药品在加S9或不加S9混合液的条件下,经上述5种试验菌株测定后,只要有1种试验菌株为阳性,即可认定该受试药品的细菌回复突变试验为致突变阳性,反之则判断为阴性。
3. 结果
3.1 受试样品析出及背景菌斑生长情况
受试药品HMS-01在有S9处理条件下的TA97a和TA1535菌株实验中,1 666.7和5 000 μg/皿浓度组有观察到镜下非干扰沉淀,其余所有处理条件均未观察到供试品沉淀,结果见表3。所有试验组均未观察到背景菌斑抑制现象。
表 3 HMS-01细菌回复突变试验结果(n=3)代谢活化 组别 TA97a TA98 TA100 TA102 TA1535 背景菌斑 沉淀 背景菌斑 沉淀 背景菌斑 沉淀 背景菌斑 沉淀 背景菌斑 沉淀 +S9 阴性对照组 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0 20.6 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0 61.7 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0 185.2 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0 555.6 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0 1 666.7 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0 5 000.0 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0 阳性对照组 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0 −S9 阴性对照组 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0 20.6 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0 61.7 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0 185.2 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0 555.6 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0 1 666.7 T0 P1 T0 P0 T0 P0 T0 P0 T0 P1 5 000.0 T0 P1 T0 P0 T0 P0 T0 P0 T0 P1 阳性对照组 T0 P0 T0 P0 T0 P0 T0 P0 T0 P0 注:T0.正常; P0.正常;P1.镜下非干扰性沉淀。 3.2 回复突变菌落数
受试药品HMS-01在所有处理条件下的回复突变菌落平均数均小于各自阴性对照组的2倍,且无浓度依赖性升高,结果见表4。本次试验条件中,在有(或无)代谢活化条件时,受试品HMS-01对组氨酸营养缺陷型(his−)鼠伤寒沙门氏菌TA97a、TA98、TA100、TA102和TA1535均无潜在致突变性。
表 4 HMS-01细菌回复突变试验结果(n=3)代谢活化 组别 回复突变菌落数 TA97a TA98 TA100 TA102 TA1535 +S9 阴性对照组 157.7±15.5 29.3±3.1 138.3±4.7 326.0±7.5 21.3±4.0 20.6 156.7±17.8 34.7±7.1 119.3±8.0 334.3±16.7 21.0±5.2 61.7 159.0±7.2 31.7±8.5 140.0±9.8 250.0±113.2 19.3±3.1 185.2 147.7±22.7 33.3±4.2 151.7±6.0 319.0±6.2 18.7±0.6 555.6 168.3±7.6 34.7±2.5 130.7±10.0 340.0±6.1 19.3±4.0 1 666.7 157.7±2.1 34.7±5.8 148.7±2.9 287.0±84.1 20.3±4.6 5 000 143.7±19.9 38.3±6.7 122.3±8.1 304.0±22.9 17.0±1.7 阳性对照组 704.0±30.2 122.7±10.1 646.7±46.0 1 758.7±86.3 574.7±9.2 −S9 阴性对照组 171.7±5.1 36.7±3.2 151.3±8.7 340.3±3.8 23.7±1.5 20.6 168.0±11.8 40.0±1.7 125.7±9.1 338.7±7.4 25.3±3.1 61.7 169.7±17.5 42.3±13.7 131.3±15.6 350.0±15.9 21.3±3.1 185.2 152.0±13.1 34.3±5.5 148.0±8.7 366.0±5.0 24.7±3.2 555.6 167.7±1.5 42.0±2.0 161.3±8.6 351.0±24.2 22.7±6.5 1 666.7 163.0±3.6 45.3±3.2 156.0±3.6 376.7±25.7 22.3±3.1 5 000 164.7±22.9 40.3±3.1 153.3±6.7 365.0±26.0 17.3±3.8 阳性对照组 1 384.0±4.0 1 264.0±17.4 504.0±38.6 1 365.3±48.4 188.0±32.7 4. 讨论
遗传毒性因其对生物体及其后代影响巨大,一直是新药临床前毒理学评价的重要组成部分。细菌回复突变试验由美国加利福尼亚大学B·N·Ames教授于1975年建立并经后来者的不断发展完善,也称为Ames试验,现今已成为全球基因毒性测试中的最为公认的方法之一,通常作为体外毒理学测试的第1步,被广泛应用于药物致突变性的初筛检验。该试验以his−的沙门氏菌为指示生物,试验中包含了加与不加代谢活化系统,通过该菌特定的生物效应能检测基因突变,对受试物的遗传毒性进行分析。本研究利用细菌回复突变试验对受试药物HMS-01遗传毒性进行评价,结果显示,HMS-01在有(或无)代谢活化条件下,均无致突变性,未发现其具有遗传毒性。该结果将为HMS-01的后续新药研发提供有力支撑。
-
表 1 CoQ10乳剂的灭菌和冻融试验结果
批次 粒径(l/nm) 灭菌前 灭菌后 冻融1次 冻融2次 冻融3次 1 241.4 239.6 255.7 263.0 271.2 2 238.5 240.0 252.6 265.9 272.3 3 240.2 238.7 259.0 263.5 269.1 表 2 CoQ10乳剂的光照稳定性试验结果
天数(t/d) 外观 含量(%) 粒径(l/nm) pH 0 良好 100.4 243.2 5.82 5 良好 97.7 239.8 5.79 10 良好 93.6 241.4 5.70 表 3 CoQ10乳剂在40 ℃的稳定性试验结果
天数(t/d) 外观 含量(%) 粒径(l/nm) pH 0 良好 100.4 243.2 5.82 5 良好 100.2 245.2 5.57 10 良好 99.5 245.0 5.21 -
[1] GARRIDO-MARAVER J, CORDERO M D, OROPESA-AVILA M, et al. Clinical applications of coenzyme Q10[J]. Front Biosci (Landmark Ed),2014,19:619-633. doi: 10.2741/4231 [2] ZOZINA V I, COVANTEV S, GOROSHKO O A, et al. Coenzyme Q10 in cardiovascular and metabolic diseases: current state of the problem[J]. Curr Cardiol Rev,2018,14(3):164-174. doi: 10.2174/1573403X14666180416115428 [3] YANG Y K, WANG L P, CHEN L, et al. Coenzyme Q10 treatment of cardiovascular disorders of ageing including heart failure, hypertension and endothelial dysfunction[J]. Clin Chim Acta,2015,450:83-89. doi: 10.1016/j.cca.2015.08.002 [4] FAROUGH S, KARAA A, WALKER M A, et al. Coenzyme Q10 and immunity: a case report and new implications for treatment of recurrent infections in metabolic diseases[J]. Clin Immunol,2014,155(2):209-212. doi: 10.1016/j.clim.2014.09.010 [5] 陈帅, 高彦祥. 基于生物大分子的辅酶Q10纳米传递载体的研究进展[J]. 中国食品学报, 2021, 21(1):361-369. [6] 温跃兰, 周卫, 陈宁. 辅酶Q10静脉注射乳的制备及其体外释放研究[J]. 华西药学杂志, 2015, 30(2):157-159. [7] 俞发, 张永昕. 姜黄素脂肪乳剂的制备工艺研究[J]. 中药材, 2015, 38(4):838-840. [8] SMYRNIOTIS V E, KOSTOPANAGIOTOU G G, ARKADOPOULOS N F, et al. Long-chain versus medium-chain lipids in acute pancreatitis complicated by acute respiratory distress syndrome: effects on pulmonary hemodynamics and gas exchange[J]. Clin Nutr,2001,20(2):139-143. doi: 10.1054/clnu.2000.0370 [9] WANG Y, WANG C L, DENG Y H, et al. A new application of monosialotetrahexosylganglioside in pharmaceutics: preparation of freeze-thaw-resistant coenzyme Q10 emulsions[J]. Eur J Pharm Sci,2021,159:105701. doi: 10.1016/j.ejps.2021.105701 [10] 邹佳, 于彬, 宋阳, 等. 粒径和质量浓度对辅酶Q10脂质体光解动力学的影响[J]. 沈阳药科大学学报, 2010, 27(1):24-27,33. [11] 邓意辉, 赵静, 董晓辉, 等. 一种复合型乳化剂及用其制备的乳剂及其制备方法: CN101091890A[P]. 2007-12-26. [12] ZHANG T, ZHOU S L, KANG L, et al. The effect of monosialylganglioside mix modifying the PEGylated liposomal epirubicin on the accelerated blood clearance phenomenon[J]. Asian J Pharm Sci,2017,12(2):134-142. doi: 10.1016/j.ajps.2016.06.005 [13] 王旭玲, 苏钰清, 宋艳志, 等. 不同密度单唾液酸四己糖神经节苷脂修饰乳剂比格犬体内药动学[J]. 沈阳药科大学学报, 2017, 34(4):338-344. [14] LEONHARD V, ALASINO R V, BIANCO I D, et al. Self-assembled micelles of monosialogangliosides as nanodelivery vehicles for taxanes[J]. J Control Release,2012,162(3):619-627. doi: 10.1016/j.jconrel.2012.07.031 期刊类型引用(2)
1. 张怡,高中强,孙花丽,秦丽君,张斌,张亮亮,门靖. HPLC-RID法测定磷酸奥司他韦干混悬剂中山梨醇的含量. 精细化工中间体. 2023(03): 73-76 . 百度学术
2. 李军,姜广苓,张中湖. 药品市场技术监管中抽验与快检的关系探讨. 药学研究. 2018(12): 742-744 . 百度学术
其他类型引用(1)
-