[1]
|
Pastwa E,Somiari SB, Czyz M, et al. Proteomics in human cancer research[J]. Proteom Clin Appl, 2007, 1(1): 4. |
[2]
|
Curcio E, Simone S, Gianluca DP. et al. Memabrane crystallization of lysozyme under forced solution flow[J]. J Membrane Sci, 2005, 257(1-2): 134. |
[3]
|
Zhang XM, Wei KG, Ma RY, et al. Precipitants and additives for membrane crystallization of lysozyme[J]. Biotechnol J, 2006, 1(11): 1302. |
[4]
|
Zhang XM, Zhang P, Ma RY, et al. The study of continuous membrane crystallization on lysozyme[J]. Desalination, 2008, 219(1-3):101. |
[5]
|
庞鸿宇, 刘丽英, 马润宇, 等. 木瓜蛋白酶动态膜结晶的实验研究[J]. 膜科学与技术, 2010, 30(1): 30. |
[6]
|
Xiao T, Takag J, Wang JH, et al. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics[J]. Nature, 2004, 432(7013): 59. |
[7]
|
李俊君, 陈 强, 李 刚, 等. 微流控技术应用于蛋白质结晶的研究[J]. 化学进展, 2009, 21(5): 1034. |
[8]
|
马建华, 仓怀兴. 空间蛋白质晶体生长新技术[J]. 生物物理学报, 2009, 25(s1):: 314. |
[9]
|
Koide S. Engineering of recombinant crystallization chaperones[J]. Curr Opin Struct Biol, 2009, 19(4): 449. |
[10]
|
Day PW, Rasmussen SG, Parnot C, et al. A monoclonal antibody for G protein-coupled receptor crystallography[J]. Nat Methods, 2007, 4(11): 927. |
[11]
|
Rasmussen SG, Choi HJ, Rosenbaum DM, et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor[J]. Nature, 2007, 450(7168): 383. |
[12]
|
Korotkov KV, Pardon E, Steyaert J, et al. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody[J]. Structure, 2009, 17(2): 255. |
[13]
|
Lam AY, Pardon E, Korotkov KV, et al. Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus[J]. J Struct Biol, 2009, 166(1): 8. |
[14]
|
Uysal S, Vasquez V, Tereshko V, et al. The crystal structure of fulllength KcsA in its closed conformation[J]. Proc Natl Acad Sci USA, 2009, 106(16): 6644. |
[15]
|
Sennhauser G, Grutter MG. Chaperone-assisted crystallography with DARPins[J]. Structure, 2008, 16(10): 1443. |
[16]
|
Mio K, Maruyama Y, Ogura T, et al. Single particle reconstruction of membrane proteins: A tool for understanding the 3D structure of disease-related macromolecules[J]. Progress Biophys Mol Biol, 2010, 103(1): 122. |
[17]
|
Fujiyoshi Y. Structural physiology based on electron crystallography[J]. Protein Sci, 2011, 20(5): 806. |
[18]
|
Bill RM, Henderson PJF, Iwata S, et al. Overcoming barriers to membrane protein structure determination[J]. Nat Biotech, 2011, 29(4): 335. |
[19]
|
Leulliot N, Tresaugues L, Bremang M, et al. High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics project: one size fits all[J]. Acta Crystallogr D, 2005, 61(6): 664. |
[20]
|
Kambach C. Pipelines, robots, crystals and biology: What use high throughput solving structures of challenging targets[J]. Curr Protein Pept Sci, 2007, 8(2): 205. |
[21]
|
Luft JR, Snell EH, DeTitta GT. Lessons from high-throughput protein crystallization screening: 10 years of practical experience[J]. Expert Opin Drug Discov, 2011, 6(5): 465. |
[22]
|
Leach AR, Gillet VJ, Lewis RA, et al. Three-dimensional pharmacophore methods in drug discovery[J]. J Med Chem, 2010, 53(2): 539. |
[23]
|
Scapin G. Structural biology and drug discovery[J]. Curr Pharm Des, 2006, 12(17): 2087. |
[24]
|
Arinaminpathy Y, Khurana E, Engelman DM, et al. Computational analysis of membrane proteins: the largest class of drug targets[J]. Drug Discov Today, 2009, 14(23-24): 1130. |
[25]
|
Grey J, Thompson D. Challenges and opportunities for new protein crystallization strategies in structure-based drug design[J]. Expert Opin Drug Discov, 2010, 5(11): 1039. |
[26]
|
甘 淋, 刘银坤. Stathm in蛋白:一个潜在的肿瘤标志物[J]. 肿瘤, 2010, 30(1): 73. |
[27]
|
Tabernero L, Aricescu AR, Jones EY, et al. Protein tyrosine phosphatases: structure-function relationships[J]. FEBS J, 2008, 275(5): 867. |
[28]
|
Chrysina ED, Chajistamatiou A, Chegkazi M. From structure-based to knowledge-based drug design through x-ray protein crystallography: sketching glycogen phosphorylase binding sites[J]. Curr Med Chem, 2011, 18(17): 2620. |
[29]
|
Rosano C, Stec-Martyna E, Lappano R. Structure-based approach for the discovery of novel selective estrogen receptor modulators[J]. Curr Med Chem, 2011, 18(8): 1188. |
[30]
|
Morrow JK, Lei DC, Lu C, et al. Recent development of anticancer therapeutics targeting Akt[J]. Rec Pat Anti-Cancer Drug Dis, 2011, 6(1): 146. |
[31]
|
Munikumar RD, Dhanaji AT, Seon HS, et al. Structure based design of heat shock protein 90 inhibitors acting as anticancer agents[J]. Bioorg Med Chem, 2011,19(5): 1714. |
[32]
|
Yuan YX, Pe JF, Lai LH. LigBuilder 2: A practical de novo drug design approach[J]. J Chem Inf Model, 2011, 51(5): 1083. |
[33]
|
Bon RS, Zhong G, Anouk Stigter E, et al. Structure-guided development of selective rabggtase inhibitors[J]. Angew Chem Int Ed, 2011, 50(21): 4957. |
[34]
|
Mai D, Jones J, Rodgers JW, et al. A Screen to Identify Small Molecule Inhibitors of Protein-Protein Interactions in Mycobacteria[J]. ASSAY Drug Dev Tech. 2011, 9(3):299. |
[35]
|
Madabushi S, Yao H, Marsh M, et al. Structural clusters of evolutionary trace residues are statistically significant and common in proteins[J], J Mol Biol, 2002, 316(1): 139. |
[36]
|
Song YL, Qi YP, Zhang WN, et al. Evolutionary trace analysis of eukaryotic DNA topoisomerase I superfamily: Identification of novel antitumor drug binding site[J]. Sci China Ser C, 2005, 28(4): 375. |
[37]
|
Sheng CQ, Dong GQ, Che XY, et al. Evolutionary trace analysis of CYP51 family: implication for site-directed mutagenesis and novel antifungal drug design[J]. J Mol Mod, 2010, 16(2): 279. |