Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code

XIN Bo, WAN Lili, WANG Jing, LIU Jinbian, HUO Yan, GUO Cheng. Cisatracurium assay in human plasma by LC-MS[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(2): 148-151. doi: 10.3969/j.issn.1006-0111.201909001
Citation: CHEN Xiujuan, CHEN Hui, WEI Hang, LIU Yan, LU Feng. Drug analysis based on scalable moving-window similarity and Bayesian method by Raman spectroscopy[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(3): 210-214. doi: 10.3969/j.issn.1006-0111.2018.03.004

Drug analysis based on scalable moving-window similarity and Bayesian method by Raman spectroscopy

doi: 10.3969/j.issn.1006-0111.2018.03.004
  • Received Date: 2018-02-01
  • Rev Recd Date: 2018-03-26
  • Objective To propose scalable moving-window similarity combined with Bayesian for rapid discriminating low active pharmaceutical ingredient (API) signal drugs (LAPIDs). Methods The scalable moving-window similarity method was employed by setting the window size dynamically according to API's peak width. In each window, the correlation coefficient (CC) of API's peak spectrum signal with LAPID's spectrum and LAPID's spectrum with excipient's spectrum were calculated respectively. The LAPIDs discrimination model was established by choosing windows with most contribution of the API spectral signal to the LAPID spectrum as variables for Bayesian discriminant model. Results The accuracy rate of LAPIDs discrimination model for discriminating LAPIDs was 94.7%. The accuracy rate of the model for discriminating testing samples was 95.6%. Conclusion Bayesian discrimination model based on scalable moving-window similarity and Bayesian algorithm can quickly discriminate LAPIDs.
  • [1] Höllein L, Kaale E, Mwalwisi YH, et al. Routine quality control of medicines in developing countries:Analytical challenges, regulatory infrastructures and the prevalence of counterfeit medicines in Tanzania[J]. Trend Anal Chem, 2016, 76:60-70.
    [2] Valverde JL. Illegal medicines as threats to public health[J]. Pharm Polic Law, 2017, 19(1):1-16.
    [3] Loethen YL, Kauffman JF, Buhse LF, et al. Rapid screening of anti-infective drug products for counterfeits using Raman spectral library-based correlation methods[J]. Analyst, 2015, 140(21):7225-7233.
    [4] Lawson LS, Rodriguez JD. Raman barcode for counterfeit drug product detection[J]. Anal Chem,2016, 88(9):4706-4713.
    [5] de Veij M, Deneckere A, Vandenabeele P, et al. Detection of counterfeit Viagra○ R with Raman spectroscopy[J]. J Pharm Biomed Anal, 2008, 46(2):303-309.
    [6] Roggo Y, Degardin K, Margot P. Identification of pharmaceutical tablets by Raman spectroscopy and chemometrics[J]. Talanta, 2010, 81(3):988-995.
    [7] Li X, Chen H, Zhu Q, et al. Analysis of low active-pharmaceutical-ingredient signal drugs based on thin layer chromatography and surface-enhanced Raman spectroscopy[J]. J Pharm Biomed Anal,2016, 131:410-419.
    [8] Litti L, Amendola V, Toffoli G, et al. Detection of low-quantity anticancer drugs by surface-enhanced Raman scattering[J]. Anal Bioanal Chem,2016, 408(8):2123-2131.
    [9] Zhang ZM, Chen S, Liang YZ. Baseline correction using adaptive iteratively reweighted penalized least squares[J]. Analyst, 2010, 135(5):1138-1146.
    [10] Steinier J,Termonia Y,Deltour J. Smoothing and differentiation of data by simplified least squares procedure[J]. Anal Chem, 1972, 44(11):1906-1909.
    [11] 陶思嘉,李梦华,李景明,等. 红外光谱及Bayes信息融合技术的葡萄酒鉴别研究[J]. 分析化学,2014, 42(2):215-220.
    [12] 周扬,吕进,戴曙光,等. 基于贝叶斯决策的近红外光谱药片分类方法[J]. 分析化学, 2013, 41(2):293-296.
    [13] 张微. 朴素贝叶斯分类模型在中红外光谱测原料奶掺假中的应用研究[J]. 食品工程, 2011(1):49-53.
    [14] Cebeci Maltas D, Kwok K, Wang P, et al. Rapid classification of pharmaceutical ingredients with Raman spectroscopy using compressive detection strategy with PLS-DA multivariate filters[J]. J Pharm Biomed Anal, 2013, 80:63-68.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 75.7 %FULLTEXT: 75.7 %META: 12.2 %META: 12.2 %PDF: 12.1 %PDF: 12.1 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 35.0 %其他: 35.0 %其他: 1.1 %其他: 1.1 %China: 0.7 %China: 0.7 %India: 0.2 %India: 0.2 %Netherlands: 0.3 %Netherlands: 0.3 %United States: 0.3 %United States: 0.3 %[]: 0.6 %[]: 0.6 %三门峡: 0.1 %三门峡: 0.1 %上海: 3.8 %上海: 3.8 %东莞: 0.1 %东莞: 0.1 %临汾: 0.2 %临汾: 0.2 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %佛山: 0.1 %佛山: 0.1 %利佛摩: 0.5 %利佛摩: 0.5 %北京: 15.3 %北京: 15.3 %南京: 0.1 %南京: 0.1 %南宁: 0.2 %南宁: 0.2 %南阳: 0.1 %南阳: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %圣何塞: 0.3 %圣何塞: 0.3 %天津: 0.4 %天津: 0.4 %孝感: 0.1 %孝感: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.6 %广州: 0.6 %张家口: 0.1 %张家口: 0.1 %恩施: 0.1 %恩施: 0.1 %成都: 0.9 %成都: 0.9 %昆明: 0.2 %昆明: 0.2 %景德镇: 0.1 %景德镇: 0.1 %杭州: 0.5 %杭州: 0.5 %枣庄: 0.1 %枣庄: 0.1 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.1 %沈阳: 0.1 %泰州: 0.2 %泰州: 0.2 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %湛江: 0.1 %湛江: 0.1 %漯河: 0.1 %漯河: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.3 %石家庄: 0.3 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 20.5 %芒廷维尤: 20.5 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.2 %芝加哥: 0.2 %衡水: 0.1 %衡水: 0.1 %西宁: 8.8 %西宁: 8.8 %贵阳: 0.3 %贵阳: 0.3 %赤峰: 0.2 %赤峰: 0.2 %运城: 1.0 %运城: 1.0 %邢台: 0.1 %邢台: 0.1 %郑州: 0.4 %郑州: 0.4 %重庆: 0.2 %重庆: 0.2 %长沙: 1.0 %长沙: 1.0 %长治: 0.2 %长治: 0.2 %阿姆斯特丹: 0.2 %阿姆斯特丹: 0.2 %青岛: 0.1 %青岛: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %黄冈: 0.6 %黄冈: 0.6 %黄冈市麻城: 0.1 %黄冈市麻城: 0.1 %龙岩: 0.2 %龙岩: 0.2 %其他其他ChinaIndiaNetherlandsUnited States[]三门峡上海东莞临汾丽水乌鲁木齐佛山利佛摩北京南京南宁南阳台州合肥呼和浩特哈尔滨圣何塞天津孝感常州广州张家口恩施成都昆明景德镇杭州枣庄武汉沈阳泰州洛阳济南湛江漯河烟台石家庄绵阳芒廷维尤芜湖芝加哥衡水西宁贵阳赤峰运城邢台郑州重庆长沙长治阿姆斯特丹青岛马鞍山黄冈黄冈市麻城龙岩Highcharts.com
  • Cited by

    Periodical cited type(1)

    1. 徐佳明,周晓芳,郭建荣. 基于UPLC-MS/MS技术监测老年患者术后血浆中苯磺酸顺阿曲库铵残留. 药学实践与服务. 2023(03): 192-196 . 本站查看

    Other cited types(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(3927) PDF downloads(419) Cited by(1)

Related
Proportional views

Drug analysis based on scalable moving-window similarity and Bayesian method by Raman spectroscopy

doi: 10.3969/j.issn.1006-0111.2018.03.004

Abstract: Objective To propose scalable moving-window similarity combined with Bayesian for rapid discriminating low active pharmaceutical ingredient (API) signal drugs (LAPIDs). Methods The scalable moving-window similarity method was employed by setting the window size dynamically according to API's peak width. In each window, the correlation coefficient (CC) of API's peak spectrum signal with LAPID's spectrum and LAPID's spectrum with excipient's spectrum were calculated respectively. The LAPIDs discrimination model was established by choosing windows with most contribution of the API spectral signal to the LAPID spectrum as variables for Bayesian discriminant model. Results The accuracy rate of LAPIDs discrimination model for discriminating LAPIDs was 94.7%. The accuracy rate of the model for discriminating testing samples was 95.6%. Conclusion Bayesian discrimination model based on scalable moving-window similarity and Bayesian algorithm can quickly discriminate LAPIDs.

XIN Bo, WAN Lili, WANG Jing, LIU Jinbian, HUO Yan, GUO Cheng. Cisatracurium assay in human plasma by LC-MS[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(2): 148-151. doi: 10.3969/j.issn.1006-0111.201909001
Citation: CHEN Xiujuan, CHEN Hui, WEI Hang, LIU Yan, LU Feng. Drug analysis based on scalable moving-window similarity and Bayesian method by Raman spectroscopy[J]. Journal of Pharmaceutical Practice and Service, 2018, 36(3): 210-214. doi: 10.3969/j.issn.1006-0111.2018.03.004
Reference (14)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return