留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

增强紫杉醇对结直肠癌化疗疗效的研究进展

陈炳辰 于恩达

陈炳辰, 于恩达. 增强紫杉醇对结直肠癌化疗疗效的研究进展[J]. 药学实践与服务, 2020, 38(6): 501-505. doi: 10.12206/j.issn.1006-0111.202007031
引用本文: 陈炳辰, 于恩达. 增强紫杉醇对结直肠癌化疗疗效的研究进展[J]. 药学实践与服务, 2020, 38(6): 501-505. doi: 10.12206/j.issn.1006-0111.202007031
CHEN Bingchen, YU Enda. The research progress on the efficacy enhancement of paclitaxel in chemotherapy for colorectal cancer[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(6): 501-505. doi: 10.12206/j.issn.1006-0111.202007031
Citation: CHEN Bingchen, YU Enda. The research progress on the efficacy enhancement of paclitaxel in chemotherapy for colorectal cancer[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(6): 501-505. doi: 10.12206/j.issn.1006-0111.202007031

增强紫杉醇对结直肠癌化疗疗效的研究进展

doi: 10.12206/j.issn.1006-0111.202007031
基金项目: 国家自然科学基金(81802434,1870455);长海医院234学科攀峰计划(2019YXK036)
详细信息
    作者简介:

    陈炳辰,硕士研究生,研究方向:紫杉醇增强结直肠癌化疗疗效研究,Email:cbc_kjsmmu@163.com

    通讯作者: 于恩达,教授,硕士生导师,研究方向:结直肠癌化疗机制研究,Tel:(021)31161612,Email:yuenda@163.com
  • 中图分类号: R735.34

The research progress on the efficacy enhancement of paclitaxel in chemotherapy for colorectal cancer

  • 摘要: 结直肠癌作为我国发病率逐年增高的一种恶性肿瘤,由于其隐匿的临床表现及有限的筛查手段,许多患者确诊时已发生较深的肿瘤浸润或出现了远处转移,此时则需要做术后化疗或新辅助化疗。而现有的结直肠癌化疗方案由于其不良反应多且易产生耐药性,故许多学者均在积极探索新的其他可用于结直肠癌的化疗药物。紫杉醇是治疗乳腺癌、卵巢癌、胰腺癌等恶性肿瘤的一线化疗药物,但结直肠癌细胞却易对其产生耐药性,治疗效果不理想,但可以通过开发新的给药系统、与其他药物联合用药等方式增强对结直肠癌的疗效。针对紫杉醇治疗结直肠癌的有效治疗策略进行综述,以期为结直肠癌更有效的化疗方案提供新的思路。
  • 甲巯咪唑(MMI)为硫脲类抗甲状腺药物(ATD),是治疗甲状腺功能亢进症的一线药物,其常见的不良反应为过敏性皮肤反应,一般较轻微,罕见的不良反应有血液系统异常(如全血细胞减少)和肝损伤等,若未及时治疗可危及生命。全血细胞减少是指患者未接受过放、化疗,至少连续2次外周血三系细胞数量均低于正常值,即WBC<4.0×109/L(ANC<1.5×109/L)、RBC<3.5(3.0)×1012/L或Hb<110(100)g/L、PLT<100×109/L[1]。据报道,ATD致全血细胞减少的发生率在日本约为0.01%[2],在我国约为0.04%[3],同时合并肝损伤就更为少见。笔者对1例甲巯咪唑致全血细胞减少及肝损伤患者进行病例分析,为治疗该类患者提供用药参考。

    患者女,30岁,54 kg,因“发热、咽痛、乏力3 d”于2019年10月6日入院。患者6个月前无明显诱因出现怕热多汗、多食易饥、易怒、心悸、失眠症状,7月25日查甲状腺功能:FT3 31.55 pmol/L,TT3 7.38 nmol/L,FT4 85.15 pmol/L,TT4 260.5 nmol/L,TSH<0.005 mIU/L,甲状腺球蛋白抗体(TgAb) 267 IU/ml,甲状腺过氧化物酶抗体(TPOAb) 72.4 IU/ml;肝功能、血常规正常;甲状腺摄碘率:3 h 46.1%,6 h 67.7%,24 h 71.2%;诊断为甲状腺功能亢进症,予甲巯咪唑片10 mg/次,3次/d。9月2日复查甲功:TSH 0.0014 mIU/L,FT3 7.17 pmol/L,FT4 22.51 pmol/L,Anti-TSHR 7.57 IU/L;血常规正常;肝功:ALT 95 IU/L,AST 53 IU/L;予复方甘草酸苷片(含甘草酸苷25 mg)1片/次,3次/d保肝治疗。10月3日患者出现发热、咽痛伴乏力,最高体温40 ℃,自行服用对乙酰氨基酚片0.75 g/次,2次/d。10月5日患者病情无好转,于本院急诊科查血常规:WBC 0.56×109/L,NEUT 0.031×109/L,Hb 94 g/L,PCT 16.24 ng/ml,立即停用甲巯咪唑,予莫西沙星、头孢哌酮舒巴坦、重组人粒细胞刺激因子等治疗1 d,复查血常规:WBC 0.64×109/L,NEUT 0.009×109/L,Hb 97 g/L,为进一步治疗收治入院。患者无心、肝、血液系统疾病史,无药物过敏史,无低碘区居住史。

    入院查体:T 40.4 ℃,P 106次/min,R 20次/min,BP 133/68 mmHg;皮肤及巩膜轻度黄染;咽部黏膜充血,扁桃体Ⅱ度肿大、脓性分泌物附着;甲状腺Ⅰ度肿大、质软、无压痛、未扪及结节;右下肢散在黄豆大小皮肤破溃。

    入院诊断:甲状腺功能亢进症,中性粒细胞缺乏,化脓性扁桃体炎。

    该患者在本院住院治疗期间的主要临床信息及药物治疗经过详见图1

    图  1  患者住院期间主要临床信息及药物治疗经过

    疾病方面,甲亢和严重感染性疾病均可致全血细胞减少。患者出现典型甲亢症状约3个月后开始口服MMI治疗,用药前血常规正常,服药后FT3、FT4降至正常,可排除甲亢导致的全血细胞减少。患者初诊时严重中性粒细胞缺乏、轻度贫血,入院第5天PCT、hsCRP下降明显,仍发展为三系细胞减少,当感染治愈后中性粒细胞未恢复至正常值,可排除严重感染性疾病导致的全血细胞减少。药物方面,无复方甘草酸苷片各组分致全血细胞减少的报道,虽有甘草合剂致血小板减少的个案,但二者关联性不明确[4]。日本一项50 385例的回顾性研究发现,MMI致全血细胞减少的中位时间为41 d(32~97 d),累计剂量为1 200~2 109 mg,但发病机制尚不明确,可能与ATD致中性粒细胞缺乏的机制重叠,当严重的粒细胞缺乏不及时干预可发展为全血细胞减少[2]。患者服用MMI 71 d,累计剂量为2 130 mg,根据Naranjo评估量表患者得分情况如下:该ADR先前有结论性报告(1分)、该ADR是在使用MMI后发生(2分)、存在客观证据证实该ADR与MMI有关(1分),总分4分,故患者全血细胞减少可能与MMI相关。

    药物性肝损伤为排他性诊断,患者无肝病史、嗜酒史,经辅助检查可排除甲亢、病毒性肝炎、自身免疫性肝炎、脂肪肝、肝脏占位及胆囊结石导致的肝损伤,故考虑药物因素可能性大。MMI致肝损伤大多发生在用药12周内[5],主要为胆汁淤积型,其次为肝细胞损伤型和混合型。本例肝损伤首先表现为AST和ALT轻度升高,虽服用复方甘草酸苷片仍出现黄疸,TBIL>5ULN,R值=1.74,为胆汁淤积型重度肝损伤[6], 根据RUCAM量表患者得分情况如下:首次服用MMI 39 d后出现肝脏生化学检查异常(2分)、排查其他原因(2分)、MMI说明书中有肝毒性报告(2分),总分6分,故患者肝损伤很可能与MMI相关。

    甲亢患者ATD疗程一般为12~18个月,但当ANC≤0.5×109/L[7](或ANC<1.5×109/L[8]),或转氨酶>3 ULN或持续升高,或出现黄疸时应停药。患者入院时NEUT 0.009×109/L,皮肤及巩膜可见黄染,因此需立即停用MMI。由于ATD致粒细胞缺乏可能在再次服药时出现,且ATD之间有交叉反应,不宜换用另一种药物,后续可采用放射性131I或外科手术治疗。

    3.3.1   抗感染治疗

    患者10月6日NEUT 0.01×109/L,危险度分层为高危,宜采取降阶梯抗感染的策略,初始方案须覆盖铜绿假单胞菌等严重G-[9]。患者使用美罗培南4 d,体温波动于39.5 ℃,扁桃体I度肿大,PCT 0.31 ng/ml,评估抗感染效果不佳。由于患者右下肢皮肤破溃未愈合,不排除该处为感染灶之一,因此,临床药师建议联用万古霉素加强抗金黄色葡萄球菌等G+菌力度,于用药48 h后监测谷浓度以确保万古霉素达有效治疗浓度(10~15 mg/L)。患者经美罗培南联合万古霉素抗感染5 d后,体温下降至36.8 ℃,生命体征平稳,选用头孢哌酮舒巴坦行降阶梯治疗。

    3.3.2   升白细胞治疗

    临床上通常使用粒细胞-巨噬细胞集落刺激因子(GM-CSF)和粒细胞集落刺激因子(G-CSF)以降低化疗药物引起的粒细胞缺乏者的感染风险,但二者未被批准用于非化疗药物导致的粒细胞缺乏症。GM-CSF用于ATD诱导的粒细胞减少缺少文献报道,且可引起血小板下降。多数作者主张在严重粒细胞缺乏或预后不佳的重症患者中使用G-CSF,以帮助其度过危险期[3, 10]。一项Meta分析表明,G-CSF可有效缩短亚洲人群ATD致粒细胞缺乏的恢复时间[WMD=−3.16 d(95%CI:−4.58~−1.74,P=0.000)][11]。因骨髓中成熟中性粒细胞约2.5×1012个,而原始粒细胞分化为成熟中性粒细胞需7~14 d,故使用G-CSF后,中性粒细胞绝对值(ANC)曲线呈双峰形。首先,G-CSF促进骨髓中成熟粒细胞向外周血释放形成第1峰,由于新的成熟粒细胞未生成,此时不宜停药;其次,G-CSF刺激骨髓粒系造血祖细胞加速增殖、分化、成熟和释放,使ANC降至最低点后再次逐渐上升形成第2个峰[12]。根据CTCAE5.0标准,患者为中性粒细胞减少4级,使用G-CSF 150 μg/d 4 d后,ANC曲线第1个高峰不明显,可能与药物剂量不足或骨髓长时间被抑制有关。G-CSF升高ANC呈剂量依赖性,一般给药剂量为300 μg/d或5 μg/(kg·d),重症患者可根据临床效果增加剂量[13-14],在G-CSF治疗无效时使用小剂量泼尼松可有效升高ANC水平。由于糖皮质激素可抑制免疫反应,患者当前感染严重,因此,临床药师建议将G-CSF的用量增至300 μg/d,同时警惕肌肉、骨骼疼痛等ADR,糖皮质激素仅在G-CSF治疗无效后且在足量抗菌药物的前提下慎重使用[15]。ANC<0.1×109/L是公认的预后不佳的因素之一,可作为G-CSF的停药指征[16]。2015版《临床用药须知》指出,严重感染伴粒细胞减少者,ANC≥1.0×109/L时停用G-CSF。本例患者的ANC经第一个高峰后升至1.593×109/L,此时感染已控制,予以停用G-CSF,合理把握了停药时机。

    全血细胞减少合并肝损伤是ATD罕见的严重不良反应,早诊断、早治疗则预后良好,否则可能继发严重感染从而威胁生命。因此,如何防范并及早发现上述不良反应,需临床药师做好用药教育:①建议患者监测血常规,在治疗初期前3个月每周1次,维持治疗期间每月1次,当WBC<4.0×109/L但ANC>1.5×109/L时,通常不用停药,可服用维生素B4等升白细胞药物。②提醒患者服药期间若出现咽喉疼痛、口腔炎、发热等症状,应立即就诊,并告知医生正在服用ATD。③建议患者在治疗初期的前3个月,每月监测1次肝功能,若出现厌食、上腹部疼痛、黄疸等症状时,应立即就诊。

  • [1] 蔡建, 王磊. 回眸2018: 聚焦结直肠癌研究领域[J]. 中华胃肠外科杂志, 2019, 22(1):9-16. doi:  10.3760/cma.j.issn.1671-0274.2019.01.002
    [2] BENSON A B, VENOOK A P, AL-HAWARY M M, et al. Rectal cancer, version 2.2018, nccn clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw,2018,16(7):874-901. doi:  10.6004/jnccn.2018.0061
    [3] VAN CUTSEM E, CERVANTES A, ADAM R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer[J]. Ann Oncol,2016,27(8):1386-1422. doi:  10.1093/annonc/mdw235
    [4] TEMRAZ S, MUKHERJI D, ALAMEDDINE R, et al. Methods of overcoming treatment resistance in colorectal cancer[J]. Crit Rev Oncol,2014,89(2):217-230. doi:  10.1016/j.critrevonc.2013.08.015
    [5] BHALLA K N. Microtubule-targeted anticancer agents and apoptosis[J]. Oncogene,2003,22(56):9075-9086. doi:  10.1038/sj.onc.1207233
    [6] AHMED A A, WANG X, LU Z, et al. Modulating microtubule stability enhances the cytotoxic response of cancer cells to paclitaxel[J]. Cancer Res,2011,71(17):5806-5817. doi:  10.1158/0008-5472.CAN-11-0025
    [7] GUPTA N, HATOUM H, DY G K. First line treatment of advanced non-small-cell lung cancer-specific focus on albumin bound paclitaxel[J]. Int J Nanomedicine,2014,9:209-221.
    [8] ORR G A, VERDIER-PINARD P, MCDAID H, et al. Mechanisms of Taxol resistance related to microtubules[J]. Oncogene,2003,22(47):7280-7295. doi:  10.1038/sj.onc.1206934
    [9] RAMANATHAN B, JAN K Y, CHEN C H, et al. Resistance to paclitaxel is proportional to cellular total antioxidant capacity[J]. Cancer Res,2005,65(18):8455-8460. doi:  10.1158/0008-5472.CAN-05-1162
    [10] JOSHI N, SHANMUGAM T, KAVIRATNA A, et al. Proapoptotic lipid nanovesicles: synergism with paclitaxel in human lung adenocarcinoma A549 cells[J]. J Control Release,2011,156(3):413-420. doi:  10.1016/j.jconrel.2011.07.025
    [11] SLEDGE G W, NEUBERG D, BERNARDO P, et al. Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an intergroup trial (E1193)[J]. J Clin Oncol,2003,21(4):588-592. doi:  10.1200/JCO.2003.08.013
    [12] JOSHI N, SHANMUGAM T, DESHMUKH A, et al. Apoptotic cascade inspired lipid nanovesicles show synergism with encapsulated paclitaxel in chemoresistant colon carcinoma[J]. Nanomedicine (Lond),2014,9(12):1789-1805. doi:  10.2217/nnm.13.182
    [13] SUN H L, KLOK H A, ZHONG Z Y. Polymers from nature and for nature[J]. Biomacromolecules,2018,19(6):1697-1700. doi:  10.1021/acs.biomac.8b00830
    [14] PHAM D T, SAELIM N, TIYABOONCHAI W. Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for cancer chemotherapy[J]. Colloids Surfaces B: Biointerfaces,2019,181:705-713. doi:  10.1016/j.colsurfb.2019.06.011
    [15] PHAM D T, SAELIM N, TIYABOONCHAI W. Crosslinked fibroin nanoparticles using EDC or PEI for drug delivery: physicochemical properties, crystallinity and structure[J]. J Mater Sci,2018,53(20):14087-14103. doi:  10.1007/s10853-018-2635-3
    [16] PHAM D T, SAELIM N, TIYABOONCHAI W. Paclitaxel loaded EDC-crosslinked fibroin nanoparticles: a potential approach for colon cancer treatment[J]. Drug Deliv Transl Res,2020,10(2):413-424. doi:  10.1007/s13346-019-00682-7
    [17] BU H, HE X, ZHANG Z, et al. A TPGS-incorporating nanoemulsion of paclitaxel circumvents drug resistance in breast cancer[J]. Int J Pharm,2014,471(1-2):206-213. doi:  10.1016/j.ijpharm.2014.05.039
    [18] CHOUDHURY H, GORAIN B, KARMAKAR S, et al. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform[J]. Int J Pharm,2014,460(1-2):131-143. doi:  10.1016/j.ijpharm.2013.10.055
    [19] DESAI A, VYAS T, AMIJI M. Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations[J]. J Pharm Sci,2008,97(7):2745-2756. doi:  10.1002/jps.21182
    [20] ZOU H, LI L, GARCIA CARCEDO I, et al. Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PI3K/mTOR dual inhibitor BEZ235 through apoptosis[J]. Int J Nanomedicine,2016,11:1947-1958. doi:  10.2217/nnm-2016-0147
    [21] KELLEHER R J III, SHEN J. Presenilin-1 mutations and Alzheimer's disease[J]. PNAS,2017,114(4):629-631. doi:  10.1073/pnas.1619574114
    [22] YONG Y L, ZHANG R Y, LIU Z K, et al. Gamma-secretase complex-dependent intramembrane proteolysis of CD147 regulates the Notch1 signaling pathway in hepatocellular carcinoma[J]. J Pathol,2019,249(2):255-267. doi:  10.1002/path.5316
    [23] VAN ES J H, VAN GIJN M E, RICCIO O, et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells[J]. Nature,2005,435(7044):959-963. doi:  10.1038/nature03659
    [24] AKIYOSHI T, NAKAMURA M, YANAI K, et al. Gamma-secretase inhibitors enhance taxane-induced mitotic arrest and apoptosis in colon cancer cells[J]. Gastroenterology,2008,134(1):131-144. doi:  10.1053/j.gastro.2007.10.008
    [25] LU Y, LI C S, DONG Q. Chinese herb related molecules of cancer-cell-apoptosis: a minireview of progress between Kanglaite injection and related genes[J]. J Exp Clin Cancer Res,2008,27(1):1-5. doi:  10.1186/1756-9966-27-1
    [26] WANG Y J, ZHANG C Z, ZHANG S W, et al. Kanglaite sensitizes colorectal cancer cells to Taxol via NF-κΒ inhibition and connexin 43 upregulation[J]. Sci Rep,2017,7:1280. doi:  10.1038/s41598-017-01480-2
    [27] BLAJ C, SCHMIDT E M, LAMPRECHT S, et al. Oncogenic effects of high MAPK activity in colorectal cancer mark progenitor cells and persist irrespective of RAS mutations[J]. Cancer Res,2017,77(7):1763-1774. doi:  10.1158/0008-5472.CAN-16-2821
    [28] FRIDAY B B, ADJEI A A. Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy[J]. Clin Cancer Res,2008,14(2):342-346. doi:  10.1158/1078-0432.CCR-07-4790
    [29] KATAYAMA K, YOSHIOKA S, TSUKAHARA S, et al. Inhibition of the mitogen-activated protein kinase pathway results in the down-regulation of P-glycoprotein[J]. Mol Cancer Ther,2007,6(7):2092-2102. doi:  10.1158/1535-7163.MCT-07-0148
    [30] ENGELMAN J A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations[J]. Nat Rev Cancer,2009,9(8):550-562. doi:  10.1038/nrc2664
    [31] XU R, NAKANO K, IWASAKI H, et al. Dual blockade of phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways overcomes paclitaxel-resistance in colorectal cancer[J]. Cancer Lett,2011,306(2):151-160. doi:  10.1016/j.canlet.2011.02.042
    [32] CHAPUIS N, TAMBURINI J, GREEN A S, et al. Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia[J]. Clin Cancer Res,2010,16(22):5424-5435. doi:  10.1158/1078-0432.CCR-10-1102
    [33] MANARA M C, NICOLETTI G, ZAMBELLI D, et al. NVP-BEZ235 as a new therapeutic option for sarcomas[J]. Clin Cancer Res,2010,16(2):530-540. doi:  10.1158/1078-0432.CCR-09-0816
    [34] ROPER J, RICHARDSON M P, WANG W V, et al. The dual PI3K/mTOR inhibitor NVP-BEZ235 induces tumor regression in a genetically engineered mouse model of PIK3CA wild-type colorectal cancer[J]. PLoS One,2011,6(9):e25132. doi:  10.1371/journal.pone.0025132
  • [1] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架治疗创伤性脑损伤的研究 . 药学实践与服务, 2025, 43(2): 67-74. doi: 10.12206/j.issn.2097-2024.202406034
    [2] 李想, 陆鸿远, 张明玉, 高欢, 姚东, 许子华.  米格列醇激活UCP1介导棕色脂肪改善冷暴露小鼠损伤的研究 . 药学实践与服务, 2025, 43(1): 1-5, 16. doi: 10.12206/j.issn.2097-2024.202404005
    [3] 崔亚玲, 吴琼, 马良煜, 胡北, 姚东, 许子华.  肝素钠肌醇烟酸酯乳膏中肌醇烟酸酯皮肤药动学研究 . 药学实践与服务, 2025, 43(1): 6-9, 21. doi: 10.12206/j.issn.2097-2024.202404006
    [4] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [5] 白学鑫, 陈玉平, 盛春泉, 武善超.  具核梭杆菌小分子抑制剂的筛选及其抗结直肠癌活性研究 . 药学实践与服务, 2024, 42(12): 503-507. doi: 10.12206/j.issn.2097-2024.202405009
    [6] 陈炳辰, 佟达丰, 万苗, 闫飞虎, 姚建忠.  UPLC-MS/MS法测定小鼠血浆中紫杉醇脂肪酸酯前药及其药代动力学研究 . 药学实践与服务, 2024, 42(8): 341-345. doi: 10.12206/j.issn.2097-2024.202404082
    [7] 陈炳辰, 王思真, 郭贝贝, 杨峰.  紫杉醇棕榈酸酯的合成及其脂质体的制备与处方研究 . 药学实践与服务, 2024, 42(9): 379-384, 410. doi: 10.12206/j.issn.2097-2024.202404062
  • 加载中
计量
  • 文章访问数:  5323
  • HTML全文浏览量:  3674
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-08
  • 修回日期:  2020-09-10
  • 刊出日期:  2020-11-25

增强紫杉醇对结直肠癌化疗疗效的研究进展

doi: 10.12206/j.issn.1006-0111.202007031
    基金项目:  国家自然科学基金(81802434,1870455);长海医院234学科攀峰计划(2019YXK036)
    作者简介:

    陈炳辰,硕士研究生,研究方向:紫杉醇增强结直肠癌化疗疗效研究,Email:cbc_kjsmmu@163.com

    通讯作者: 于恩达,教授,硕士生导师,研究方向:结直肠癌化疗机制研究,Tel:(021)31161612,Email:yuenda@163.com
  • 中图分类号: R735.34

摘要: 结直肠癌作为我国发病率逐年增高的一种恶性肿瘤,由于其隐匿的临床表现及有限的筛查手段,许多患者确诊时已发生较深的肿瘤浸润或出现了远处转移,此时则需要做术后化疗或新辅助化疗。而现有的结直肠癌化疗方案由于其不良反应多且易产生耐药性,故许多学者均在积极探索新的其他可用于结直肠癌的化疗药物。紫杉醇是治疗乳腺癌、卵巢癌、胰腺癌等恶性肿瘤的一线化疗药物,但结直肠癌细胞却易对其产生耐药性,治疗效果不理想,但可以通过开发新的给药系统、与其他药物联合用药等方式增强对结直肠癌的疗效。针对紫杉醇治疗结直肠癌的有效治疗策略进行综述,以期为结直肠癌更有效的化疗方案提供新的思路。

English Abstract

陈炳辰, 于恩达. 增强紫杉醇对结直肠癌化疗疗效的研究进展[J]. 药学实践与服务, 2020, 38(6): 501-505. doi: 10.12206/j.issn.1006-0111.202007031
引用本文: 陈炳辰, 于恩达. 增强紫杉醇对结直肠癌化疗疗效的研究进展[J]. 药学实践与服务, 2020, 38(6): 501-505. doi: 10.12206/j.issn.1006-0111.202007031
CHEN Bingchen, YU Enda. The research progress on the efficacy enhancement of paclitaxel in chemotherapy for colorectal cancer[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(6): 501-505. doi: 10.12206/j.issn.1006-0111.202007031
Citation: CHEN Bingchen, YU Enda. The research progress on the efficacy enhancement of paclitaxel in chemotherapy for colorectal cancer[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(6): 501-505. doi: 10.12206/j.issn.1006-0111.202007031
  • 结直肠癌是最常见的恶性肿瘤之一,在中国,其发病率和病死率均逐年增加[1]。对具有高危因素、病理分期II期及分期更严重的患者,推荐使用术后化疗药物,对于已转移的和无法I期切除的结直肠癌患者则推荐行新辅助化疗[2]。所以,化疗是治疗结直肠癌的主要方法之一,但无论是以氟尿嘧啶、奥沙利铂或伊立替康为基础的术后化疗方案,还是增加贝伐单抗或抗表皮生长因子的对转移性结直肠癌的新辅助化疗方案[3],它们均有明显的药物不良反应及易出现耐药性的缺点[4]。通过拓展结直肠癌化疗药物的种类,可以为患者提供更多的化疗方案以优化治疗效果,降低肿瘤细胞对化疗药物的耐药性。

    紫杉醇(PTX)是一种常见的天然抗肿瘤药物,是紫杉烷类药物中的一员。已有研究证明促使细胞有丝分裂停滞是PTX诱导细胞凋亡的主要作用机制,可与β-微管蛋白结合并稳定微管丝[5]​​,干扰细胞分裂中的微管分解过程,使细胞周期停留至G2/M期,从而导致所作用的细胞凋亡、有丝分裂功能障碍,因此具有较强的抗肿瘤活性[6]。但由于PTX水溶性较低,导致其成药性差,限制了其在临床中的应用。此外,PTX还会引起超敏反应、骨髓抑制、外周神经病变等毒副作用[7]。2008年我国批准上市由美国生物科学公司研制的紫杉醇白蛋白纳米粒,部分解决了PTX成药性差、具有多种毒副作用的问题,使PTX成为治疗卵巢癌、乳腺癌、小细胞肺癌和胰腺癌等恶性肿瘤的一线化疗药物。但对于结直肠癌,部分患者仍然存在的过敏反应以及结直肠癌细胞对PTX的耐药性,令其无法广泛应用于结直肠癌的治疗中。据报道,有几种可能的机制解释了这种耐药性,例如,P-糖蛋白的过表达、微管蛋白的突变、异常信号通路的激活[8]和细胞总抗氧化能力的增加[9]等。近年来,许多研究尝试研制PTX新型药物递送系统或针对其耐药机制与其他药物联用等,给PTX治疗结直肠癌提供了依据和可行性方案。笔者对如何增强紫杉醇对结直肠癌化疗疗效的研究进行综述,以期为后续实验研究奠定基础。

    • 由于PTX水溶性较低,成药性差,易产生过敏反应、骨髓抑制等不良反应,限制了其在临床上的应用[7]。纳米药物递送系统不仅能增加难溶性药物的成药性,还能增加药物的效能以及降低其不良反应,作为纳米载体已广泛用于药物的制备过程。

    • 脂质纳米囊泡在药物递送中应用广泛,是一种可作为PTX载体的脂质颗粒。有研究表明,以磷脂酰丝氨酸(PS)为基质的脂质纳米囊泡对紫杉醇的包封率达82%,通过Chou-Talalay联合指数法测得载有PTX的脂质纳米囊泡的联合指数(CI)为0.08,说明脂质纳米囊泡不仅增加了PTX的抗肿瘤效应,自身还与PTX有抗肿瘤的协同作用[10]。脂质纳米囊泡是通过静脉途径完成药物靶向递送的,由于它具有增强渗透和滞留药物(EPR)效应,使抗肿瘤药物在局部肿瘤区域累积时间延长[11],提高了治疗效果。印度几位科学家经实验[12]证明了以PS为基础的脂质纳米囊泡携载PTX能够对结直肠癌细胞产生有效的促凋亡作用。当以空载脂质纳米囊泡(PCS-B)、载有紫杉醇的脂质纳米囊泡(PCS-PTX)、游离紫杉醇与空白对照组分组进行细胞周期分析实验时,发现前三者均有促细胞周期凋亡的作用。PCS-B可使得HCT-15细胞停留在G2/M期的母细胞数量较对照组显著增高(P<0.05);且PCS-PTX组中停留在G2/M期的母细胞数量较PCS-B组与游离PTX组均更多(P<0.05)。实验证明PCS不仅是PTX的载体,两者还可以协同促进结直肠癌细胞的凋亡作用。进一步的研究表明,PCS-PTX的IC50较游离PTX约降低99%,PCS-PTX对于耐药性人结直肠癌细胞HCT-15的IC50仅为(9.4±2.0)nmol/L,与游离PTX相比具有统计学意义。该研究同时做了体外溶血实验等,证明了PCS-PTX对于红细胞的安全性,使用Rh-123外排测定验证了脂质纳米囊泡帮助PTX躲避p-gp泵的外排,减少结直肠癌细胞对于PTX的耐药性。在增加疗效、降低副作用的同时,减少了耐药性的发生,具有良好的应用前景。

    • 基于聚合物的纳米颗粒是一种具有生物可降解性、长循环性等优势的纳米载药颗粒,常被用作化疗药物的载体[13],天然高分子聚合物(如丝素蛋白)更是具有对人体毒副作用小、易降解、对环境影响小等特点,所以引起越来越多学者的关注[14]。丝素蛋白因结构中的重复疏水域和次要亲水域,而具有良好的韧性、弹性和生物相容性。实验表明[15],使用1-乙基-3-(3-二甲基氨基丙基)碳二亚胺(1-ehyl-3-(3-dimethylaminopropyl carbodiimide),EDC)交联的纤维蛋白纳米颗粒(EDC-FNP)的理化性质可以很好地被控制,包括颗粒大小、zeta电位、药物包封率、结晶率以及药物溶解度等。由于纳米颗粒表面积与体积比的增高,经EDC-FNP运载的PTX溶解度较游离状态提高了10倍以上;并且EDC-FNP较FNP具有更高的药物包封率。EDC-FNP运载的PTX可直接经细胞的内吞作用被摄取,解决了PTX水溶性低的难题,还避免了结直肠癌细胞膜上p-gp泵外排功能,降低了结直肠癌细胞对PTX的耐药性。在体外细胞毒性试验中[16],若将游离PTX与PTX-EDC-FNP分别作用于结直肠癌细胞系CaCo-2,则两者的IC50分别为105、10 μg/ml,可见,经EDC-FNP携带的PTX较游离PTX的IC50降低了90%,证明经EDC-FNP负载后的PTX比游离PTX具有更高的细胞毒性。同时,该试验也测试了EDC-FNP-PTX的理化性质的稳定性与其对红细胞的安全性:在4 ℃的条件下,EDC-FNP-PTX至少在6个月内可以维持其理化性质的稳定;经EDC-FNP-PTX作用的红细胞,其溶血百分率不足4%,保证其对人体红细胞的安全性。

    • 纳米乳剂(NE)也是一种有效的药物传送方式。有研究表明,载有PTX的纳米乳剂(NE-PTX)能够通过抑制P-糖蛋白活性、增加肿瘤细胞中的药物浓度等方式降低不同类型肿瘤细胞的耐药性[17]、提高药物热力学稳定性和增加肿瘤细胞膜对PTX的通透性来增加细胞药物的摄取[18],以及增加PTX对肿瘤细胞的细胞毒性和凋亡作用[19]。由于纳米乳剂的包裹使PTX增加了溶解性,通过内吞作用,NE-PTX很容易被结直肠癌细胞吞噬,从而增加PTX的效能,减少了用药剂量,间接降低了PTX对人体可能产生的毒副作用。经实验统计,NE-PTX能够显著增加PTX对结直肠癌细胞HCT-116和HT-29的细胞毒作用,使IC50值降低75%~80%[20];而且,在200 μg/ml的浓度下,NE-PTX对正常细胞没有毒性,也证实了纳米乳液作为PTX载体的安全性。

    • 由于紫杉醇可与许多抗肿瘤药物有协同作用,预示着可使用小剂量紫杉醇来获得比既往更大的抗肿瘤效果,既提高了PTX对于结直肠癌的抗肿瘤作用,又降低了PTX的用量,减轻其对患者的不良反应。

    • γ-分泌酶是一种多亚基天冬氨酰蛋白酶复合物,与各种I型跨膜蛋白的膜内蛋白水解有关,至少由4种蛋白质组成,即早老蛋白(presenilin)、呆蛋白(nicastrin)、前咽缺陷蛋白-1(anterior pharynx defective-1,aph-1)和早老素增强子-2(presenilin enhancer-2,pen-2)等,其中,早老蛋白是γ-分泌酶混合物中主要的催化剂[21]。γ-分泌酶是包括Notch, E-cadherin, N-cadherin和CD44[22]在内的多种蛋白在膜内切割所必需的酶。

      有研究表明,在有APC抑癌基因突变的小鼠体内,γ-分泌酶抑制剂对Notch蛋白信号的抑制可将小鼠的腺瘤转化为杯状细胞,提示γ-分泌酶抑制剂可能具有抗肠道肿瘤的作用[23]

      日本学者研究发现γ-分泌酶抑制剂增强了结直肠癌SW480和DLD-1细胞系中PTX诱导的有丝分裂阻滞[24]。有实验指出,当单独使用γ-分泌酶抑制剂DAPT时,不能诱导结直肠癌细胞的凋亡;而当DAPT与PTX联合用于结直肠癌细胞时,则开始表现出DAPT剂量依赖性地增加PTX诱导这两种细胞系凋亡的能力。后期使用除DAPT外的其他γ-分泌酶抑制剂与PTX联合作用于结直肠癌细胞,也观察到了上述结果。虽然γ-分泌酶抑制剂具体的作用机制仍未明确,但是仍提示我们:γ-分泌酶抑制剂与PTX的联合应用可能是克服结直肠癌对PTX耐药的一种新的治疗方法。

    • 近年来,越来越多的中成药也逐渐被用于肿瘤的化疗。康莱特(KLT)注射液是从中药薏苡仁中提取的有效成分,为双相广谱抗癌药[25]。我国学者研究发现[26],在PTX之前使用KLT注射液可以增强PTX对结直肠癌的细胞毒性及PTX诱导微管蛋白聚合的能力。该研究在4种不同结直肠癌细胞系中分别进行了MTT比色法,测得经KLT注射液预处理后再使用PTX比单独使用PTX抑制的4种肿瘤细胞活性比例均显著增加,且经混合药物分析软件得到在不同KLT注射液与PTX浓度下的CI值均小于1,表明两种药物具有协同效应。在之后的免疫印迹实验及免疫化学分析实验中,也证明了4种结直肠癌细胞系经KLT注射液预处理后再使用PTX能够增强PTX促微管蛋白聚合的能力,如在HCT-106结直肠癌细胞系中,经KLT注射液预处理后再使用PTX的细胞系中的微管蛋白合成率较单独使用PTX的组别明显增加了约20%,其余3个细胞系也均显著提高了PTX促微管蛋白聚合的能力。可见,KLT注射液与PTX联合应用具有较好的临床应用前景。

    • 在PTX耐药性的相关机制研究中,改变细胞信号通路这一研究方向越来越引起人们的兴趣,这些对于转导通路的调节可能是一种新颖的抗肿瘤策略。

    • MAPK信号通路是信号从细胞表面转导至细胞核内部的重要传递者,它与细胞生长和存活的调节息息相关。MAPK信号通路往往在人类恶性肿瘤中,尤其是结直肠癌中被异常激活[27]。MAPK信号通路可以通过激活RAS基因突变、过表达或激活表皮生长因子受体(EGFR)和激活RAF基因突变等机制在人肿瘤细胞的发生中产生作用[28]

      PD98059是MAPK下游调节蛋白细胞外调节蛋白激酶(ERK)的抑制剂,它可以抑制MAPK信号通路的转导。实验表明[29],与PD98059协同治疗可显著增强PTX对结直肠癌SW480与DLD-1细胞系的凋亡作用,使用Hoechst 33342进行核染色可证明增加的凋亡细胞与PD98059有关。通过siRNA转染来敲除SW480与DLD-1细胞系的ERK表达,以直接阻断MAPK信号通路的转导,更加证实了MAPK信号通路的阻断可以增强PTX对于结直肠癌细胞的促凋亡作用,而非PD98059自身其他未知的作用。研究同时指出,MAPK信号通路的阻断会引起P-蛋白下调,以此来降低肿瘤细胞的耐药性,这也从另一方面说明了阻断MAPK信号通路可以增加PTX对结直肠癌细胞的疗效。

    • PI3K信号通路在调节细胞存活、增殖和分化的过程中均起到重要作用,并且也参与了肿瘤细胞对化疗药物的耐药机制[30]。PI3K是由p110a-p85, p110b-p85, p110d-p85和衍生物异二聚体组成,可将磷脂酰肌醇转化为磷酸化的形式。胰岛素、细胞因子、生长因子的各种刺激[31]可使p110亚基产生阳离子,进而将信号转导至下游效应子,例如丝氨酸-苏氨酸蛋白激酶(AKT)、哺乳动物雷帕霉素靶蛋白(mTOR)和p70 核糖体蛋白S6激酶(S6K)。有研究指出[31],低剂量的PTX可上调PI3K信号,尤其增加了结直肠癌细胞中的S6K水平,从而造成了肿瘤细胞对PTX的耐药性。单独使用PTX可诱导10%~20%的结直肠癌SW480和DLD-1细胞系停留在sub-G1阶段,在使用PI3K信号通路抑制剂LY294002后,该比例增加至32%~33%。且随着LY294002的浓度增高,凋亡细胞的比例增加。通过siRNA来敲除AKT和使用mTOR抑制剂雷帕霉素来抑制PI3K的下游信号以确认PI3K阻滞可以增加PTX对于结直肠癌细胞的促凋亡作用,而不是LY294002的其他未知作用。

      BEZ235是PI3K/Akt/mTOR信号通路的新型抑制剂,可抑制PI3K和mTOR的活性,并同时抑制mTOR阻止PI3K活性的反馈激活[32-33]。先前的研究[34]表明,BEZ235可有效抑制PIK3CA突变和非突变的结直肠癌细胞系的生长。有文献[20]指出,BEZ235可以增加结直肠癌细胞HCT-116和HT-29对PTX的敏感性,并且两者的联合治疗可以通过细胞周期变化和凋亡途径协同作用,增加结直肠癌细胞HCT-116和HT-29的死亡。通过细胞活性测定,单独使用PTX对于HCT-116与HT-29细胞系的IC50分别为9.72、9.51 nmol/L,当与浓度为25 nmol/L的BEZ235联合使用时,PTX对于这两个结直肠癌细胞系的IC50均下降66%。并且,两者联合使用可使结直肠癌细胞于sub-G1期的细胞量增加了40.5%,即有效促进了细胞系的凋亡。通过阻滞PI3K信号通路,为PTX用于结直肠癌的治疗提供了新思路。

    • 现有治疗结直肠癌的化疗药物毒副作用多、易产生耐药性,许多研究力图寻求新的化疗方案来改变这一现状。经查阅文献,发现PTX这一天然的抗肿瘤药物因其独特的作用机制及可修饰性已成为乳腺癌、小细胞肺癌和胰腺癌等恶性肿瘤的一线化疗药物。近年来,许多学者研究发现,PTX可通过纳米载药系统的装载、与其他药物的结合、阻断相关信号通路等途径,有效、安全地应用到结直肠癌的化疗中,为开发结直肠癌的有效治疗提供新的理论依据和治疗策略。

参考文献 (34)

目录

/

返回文章
返回