-
紫杉醇(PTX)是从裸子植物红豆杉树皮分离得到的天然次生代谢产物,属于微管蛋白抑制剂,在临床上广泛用于卵巢癌、非小细胞肺癌和乳腺癌的治疗[1]。传统的PTX注射液因添加了聚氧乙烯蓖麻油而导致过敏反应,并加重PTX的外周神经毒性,还影响药物分子向组织间扩散,影响抗肿瘤效应,且滴注时间过长[2]。前药设计在提高药物生物利用度,增加药物稳定性,减小毒副作用,延长药物作用时间等方面具有很大的优势[3]。其中,长链饱和脂肪酸如肉豆蔻酸(MA)[4]、棕榈酸(PA)[5]和硬脂酸(SA)[6]等常用于药物成酯前药修饰。例如,治疗类风湿性关节炎的上市药物地塞米松棕榈酸酯注射液,就是通过饱和脂肪酸棕榈酸与地塞米松成酯反应形成地塞米松棕榈酸酯前药,继而制备成纳米前药,极大地增加了制剂的稳定性与成药性[6]。
脂质体作为载体递送脂溶性药物近年来受到广泛关注,这为PTX脂质体制剂的研发提供了重要依据。据此,我们对PTX的C2′羟基进行酯化修饰形成脂溶性较强的PTX肉豆蔻酸酯(PTX-MA)、PTX棕榈酸酯(PTX-PA)和PTX硬脂酸酯(PTX-SA)等前药分子,然后将其分别制备成PTX-MA脂质体(PTX-MA-L)、PTX-PA脂质体(PTX-PA-L)和PTX-SA脂质体(PTX-SA-L),不仅可以解决PTX成药性差的问题,也可以提高载药量、增加药物稳定性、改善药代动力学和药效学[7-10]。
该研究以卡马西平为内标,成功建立了小鼠血浆中PTX-MA、PTX-PA和PTX-SA含量的超高效液相色谱-串联质谱(UPLC-MS/MS)测定方法,在此基础上比较考察了其脂质体PTX-MA-L、PTX-PA-L和PTX-SA-L在小鼠体内的药代动力学特性,从而为PTX脂肪酸酯前药的纳米制剂研发提供科学依据。
-
Vanquish™ 超高相液相色谱仪(美国Thermo scientific公司);TSQ Altis™ 三重四级杆质谱仪(美国Thermo scientific公司);台式高速冷冻离心机(上海伟进生物科技有限公司)。
-
紫杉醇(纯度≥98%)购自江苏红豆杉生物医药科技股份有限公司;紫杉醇肉豆蔻酸酯(PTX-MA,纯度≥98%)及其脂质体(PTX-MA-L)、紫杉醇棕榈酸酯(PTX-PA,纯度≥98%)及其脂质体(PTX-PA-L)、紫杉醇硬脂酸酯(PTX-SA,纯度≥98%)及其脂质体(PTX-SA-L)均为海军军医大学药学系药剂学教研室自制;甲酸、超纯水、甲醇和乙腈购自赛默飞世尔(中国)有限公司,均为色谱纯;卡马西平购自上海源叶生物科技有限公司。
-
ICR小鼠[雌性,(18±2) g,购自浙江维通利华实验动物技术有限公司,动物许可证号:SCXK(浙)2020-0002]。
-
色谱柱:Eclipse Plus C8色谱柱(2.1 mm×50 mm,1.8 μm);流动相:0.2%甲酸水溶液(A)-甲醇(B)梯度洗脱;梯度洗脱程序:20% B~ 60% B(0~0.3 min),60% B~ 98% B(0.3~ 3.9 min),98% B~ 60% B(3.9~ 4.8 min),60% B~ 20% B(4.8~ 5.2 min),20% B(5.2~ 7.0 min);流速:0.3 ml/min;进样量:10 µl;柱温:30 ℃。
-
电喷雾离子源(ESI)采用正离子采集模式。离子源参数:电喷雾电压:3.5 kV(+);离子传输管温度:325 ℃;雾化温度:275 ℃;鞘气压力:35 Arb;辅气压力:5 Arb;毛细管压力:1.5 mTorr。定量分析离子分别为:m/z
1086.7 →518.3(PTX-MA),m/z1114.5 →546.3(PTX-PA),m/z1142.7 →574.4(PTX-SA),m/z 237.1→194.0(卡马西平,内标)。 -
分别精密称取10.00 mg 3种对照品(PTX-MA、PTX-PA、PTX-SA)置于10 ml容量瓶中,用甲醇溶解并定容,配制成1.00 mg/ml的对照品储备液。吸取一定量的对照品储备液,用甲醇稀释成一系列浓度的工作溶液,置于4 ℃冰箱保存备用。
-
精密称取10.00 mg卡马西平,用乙腈溶解并定容,配制成1.00 mg/ml的内标储备液。吸取一定量的内标储备液,用乙腈稀释成30.00 ng/ml工作溶液,置于4℃冰箱保存备用。
-
精密量取100 μl小鼠血浆样品液于1.5 ml离心管中,加入300 µl内标溶液,涡旋混合1 min后,13 000 r/min离心10 min,吸取上清液,置于新的EP管中,于40 ℃下真空离心挥干溶剂。精密量取200 µl乙腈复溶样品,过0.22 μm尼龙滤膜,即制得小鼠血浆样品溶液。
-
精密量取100 µl空白血浆,用300 µl乙腈代替300 µl内标液,按“2.3”项下方法处理后,再按“2.1”项下方法测定,记录空白血浆色谱图;精密量取100 µl空白血浆,按“2.3”项下操作处理后,再按“2.1”项下方法测定,记录含内标的血浆样品色谱图;精密量取含适量PTX-MA、PTX-PA、PTX-SA的空白血浆样品各100 µl,用300 µl乙腈代替300 µl内标液,按“2.3”项下方法处理后,再按“2.1”项下方法测定,记录含PTX-MA、PTX-PA和PTX-SA的血浆样品色谱图。结果见图1,内标、PTX-MA、PTX-PA和PTX-SA的色谱峰附近无明显内源性杂质峰干扰,其保留时间分别为2.41、4.37、4.84和5.28 min,表明血浆中内源性物质不干扰PTX-MA、PTX-PA、PTX-SA和内标的测定。
-
精密量取95 µl小鼠空白血浆,加入5 µl紫杉醇脂肪酸酯对照样品(PTX-MA或PTX-PA或PTX-SA)工作溶液配制成5.00、25.00、50.00、100.00、300.00和500.00 ng/ml的PTX-MA或PTX-PA或PTX-SA系列浓度对照样品小鼠血浆液,按“2.3”项下操作处理后,再按“2.1”项下进样测定。以PTX-MA或PTX-PA或PTX-SA对照样品浓度为横坐标(X),样品峰面积与内标峰面积的比值为纵坐标(Y)进行线性回归分析,求得各自回归方程,结果见表1。
表 1 PTX-MA、PTX-PA和PTX-SA的标准曲线参数
对照样品 回归方程 r 线性范围(ng/ml) PTX-MA Y=0.186 2 X−1.984 0.995 8 5.00~500.00 PTX-PA Y=0.668 5 X−12.977 0.998 4 5.00~500.00 PTX-SA Y=0.402 1 X−7.171 0.998 8 5.00~500.00 -
取空白小鼠血浆,分别配制含PTX-MA、PTX-PA和PTX-SA浓度为10.00、250.00和375.00 ng/ml的低、中、高3个浓度的小鼠血浆样品溶液,置于−80 ℃低温冰箱保存。按“2.3”项下方法处理后,再按“2.1”项下方法进样分析测定。每个浓度5份,每天连续进样3次,连续3 d。根据测得PTX-MA、PTX-PA、PTX-SA和内标的峰面积,计算PTX-MA、PTX-PA和PTX-SA的实测浓度,考察PTX-MA、PTX-PA和PTX-SA低、中、高浓度在小鼠血浆中的日内及日间的准确度和精密度。如表2结果显示,PTX-MA、PTX-PA和PTX-SA在低、中、高3个浓度的日内和日间的精密度RSD均<8.4%,准确度均>95%,表明仪器精密度良好。
表 2 PTX-MA、PTX-PA和PTX-SA样本的精密度(n = 5)
对照样品 理论浓度(ng/ml) 日内精密度 日间精密度 实测浓度(ng/ml) 回收率(%) RSD(%) 实测浓度(ng/ml) 回收率(%) RSD(%) PTX-MA 10.00 9.93±0.83 99.36±8.32 8.38 10.37±0.61 103.67±6.06 5.84 250.00 242.29±10.93 96.84±4.51 4.51 247.42±5.30 98.97±2.12 2.14 375.00 371.31±6.30 99.02±1.68 1.70 373.37±6.20 99.57±1.65 1.66 PTX-PA 10.00 9.83±0.50 98.28±5.00 5.09 10.25±0.55 102.53±5.52 5.38 250.00 248.42±6.81 99.37±2.72 2.74 246.93±5.74 98.77±2.29 2.32 375.00 373.79±8.70 99.68±2.32 2.33 371.59±4.12 99.09±1.10 1.11 PTX-SA 10.00 9.59±0.51 95.90±5.08 5.30 10.33±0.67 103.27±6.72 6.50 250.00 248.81±7.89 99.53±3.16 3.17 245.92±5.04 98.37±2.01 2.05 375.00 374.36±8.81 99.83±2.35 2.35 371.26±2.43 99.00±0.65 0.65 -
取空白小鼠血浆,分别配制低、中、高3个浓度(10.00、250.00和375.00 ng/ml)的血浆样品(PTX-MA、PTX-PA和PTX-SA)液各3份,分别于室温放置12 h、−20 ℃冻存5 d后复融或−20 ℃反复冻融3次,按“2.3”项下方法处理样本,再按“2.1”项下方法进样分析测定。结果显示,在上述考察条件下,PTX-MA、PTX-PA和PTX-SA的低、中、高3个实测浓度的RSD均<10%,表明PTX-MA、PTX-PA和PTX-SA的小鼠血浆样品在室温放置12 h、−20 ℃冻存5 d及−20 ℃反复冻融3次条件下稳定性良好。
-
取空白小鼠血浆,分别配制低、中、高3个浓度(10.00、250.00和375.00 ng/ml)的血浆样品(PTX-MA、PTX-PA和PTX-SA)液各3份,按“2.3”项下方法处理样本,再按“2.1”项下方法进样分析测定,计算所得浓度为A。另取空白血浆,按“2.3”项下方法处理样本后,再加入PTX-MA或PTX-PA或PTX-SA工作液形成终浓度分别为10.00、250.00和375.00 ng/ml的3种不同浓度的标准溶液,按“2.1”项下方法进样分析测定,计算所得浓度为B。用甲醇配制含内标(30 ng/ml)的低、中、高3个浓度(10.00、250.00 和375.00 ng/ml)的PTX-MA或PTX-PA或PTX-SA的样品溶液,按“2.1”项下方法进样分析测定,计算所得浓度为C。提取回收率为(A/B)×100%,基质效应为(B/C)×100%。结果见表3,PTX-MA、PTX-PA或PTX-SA的平均提取回收率和基质效应的RSD均<10%,符合测定要求。
表 3 小鼠血浆中PTX-MA、PTX-PA和PTX-SA的提取回收率和基质效应(n = 3)
对照样品 理论浓度(ng/ml) 回收率(%) RSD(%)a 基质效应(%) RSD(%)b PTX-MA 10.00 79.82±6.60 8.28 95.36±6.55 6.87 250.00 88.35±2.84 3.22 96.28±3.59 3.73 375.00 92.08±2.46 2.67 98.86±1.46 1.48 PTX-PA 10.00 73.34±7.24 9.88 94.28±1.96 2.08 250.00 83.58±2.24 2.68 98.46±1.86 1.89 375.00 89.47±1.51 1.68 98.88±0.68 0.69 PTX-SA 10.00 61.90±4.11 6.63 95.90±5.08 5.30 250.00 77.26±2.88 3.73 98.78±2.22 2.25 375.00 84.43±1.21 1.44 99.08±1.01 1.02 注:a:回收率的相对标准偏差;b:基质效应的相对标准偏差。 -
雌性ICR小鼠90只,于实验前12 h禁食不禁水, 标记称重后分为PTX-MA-L、PTX-PA-L、PTX-SA-L 3组。以紫杉醇等摩尔剂量15.00 mg/kg小鼠尾静脉给药,分别于给药后2 min、30 min、1 h、2 h、4 h、6 h、12 h、1 d、3 d、14 d,小鼠眼眶静脉丛取血0.3 ml(每个时间点各取3只小鼠),置于装有肝素钠的离心管中,以10 000 r/min离心3 min后,上清液置于−80 ℃冰箱保存待测。上述血浆样品液按“2.3”项下方法处理后按“2.1”项下方法进样测定。所得数据用DSA2.0软件进行处理,以三房室模型计算得到药代动力学参数,结果见表4。
表 4 小鼠尾静脉注射3种紫杉醇脂肪酸酯前药脂质体药代动力学参数(n = 3)
关键参数 单位 PTX-MA-L PTX-PA-L PTX-SA-L Cmax ng/L 226 436.10±4 932.89 289 171.80±5 311.62 333 508.00±3 464.10 AUC0-14 d ng·h/L 502 384.75±3 464.10 776 973.44±5 196.15 1 668 984.05±6 350.85 AUC0-∞ ng·h/L 503 800.86±8 082.90 777 835.54±6 429.10 1 669 696.54±5 773.50 t1/2 h 14.78±2.00 44.49±3.51 69.32±2.15 V L/kg 45.68±1.00 62.57±1.53 68.58±3.10 CL L·kg/h 29.06±2.52 24.94±2.08 13.74±2.52 -
该研究以卡马西平为内标,建立了小鼠血浆中3种紫杉醇脂肪酸酯前药含量的UPLC-MS/MS测定方法。其中,内标、PTX-MA、PTX-PA和PTX-SA色谱峰保留时间分别为2.41、4.37、4.84和5.28 min,均达到基线分离。相比前期研究中血浆PTX-MA、PTX-PA和PTX-SA含量的传统HPLC测定方法存在分离度差、灵敏度低的缺陷而无法满足检测要求,该方法具有选择性更好、分离范围更广、分离能力更强、灵敏度及重现性更高等优点,并成功应用于3种紫杉醇脂肪酸酯前药脂质体(PTX-MA-L、PTX-PA-L和PTX-SA-L)的小鼠体内药代动力学参数的测定。
该研究采用乙腈直接沉淀血浆蛋白的方式,短时间内可检测小鼠血浆中3种紫杉醇脂肪酸酯,体现了方法的便捷性和可控性。另外,通过优化流动相组成以及比例,使得内源性杂质与药物样品具有较好的分离效果。特别是在流动相中加入甲酸,不仅可以改善峰形,也可促进样品离子化,提高质子化检测能力,从而提高该方法的检测灵敏度。
总之,该研究建立的UPLC-MS/MS测定方法专属性强、操作简便、灵敏度和精密度高、重现性和稳定性好, 可用于定量测定小鼠体内血浆中3种紫杉醇脂肪酸酯前药含量。小鼠体内药代动力学研究结果显示, 3种紫杉醇脂肪酸酯脂质体PTX-MA-L、PTX-PA-L和PTX-SA-L在小鼠体内的t1/2分别为14.78、44.49和69.32 h,清除率(CL)分别为29.06、24.94和13.74 L·kg/h,提示随着脂肪酸碳链长度的增加,紫杉醇脂肪酸酯在小鼠体内的t1/2大幅延长、CL则显著降低,表明紫杉醇经不同链长饱和脂肪酸酯化修饰可明显改变其体内药动学特性,其中,紫杉醇棕榈酸酯脂质体(PTX-PA)具有适宜的药动学参数,值得下一步深入开发研究。
Determination and pharmacokinetics investigation of prodrugs of paclitaxel fatty acid esters in mouse plasma by UPLC-MS/MS
-
摘要:
目的 建立小鼠血浆中紫杉醇肉豆蔻酸酯(PTX-MA)、紫杉醇棕榈酸酯(PTX-PA)和紫杉醇硬脂酸酯(PTX-SA)等3种紫杉醇脂肪酸酯的超高效液相色谱-串联质谱(UPLC-MS/MS)测定方法,并初步考察其脂质体的小鼠体内药代动力学特性。 方法 采用Eclipse Plus C8色谱柱(2.1 mm×50 mm,1.8 μm),0.2%甲酸水溶液(A)和甲醇(B)的不同比例混合液为流动相,梯度洗脱,三重四极杆串联质谱多重反应监检测(MRM),流速:0.3 ml/min,柱温:30℃,进样量:10 μl。 结果 PTX-MA、PTX-PA和PTX-SA在5.0~500.0 ng/ml范围内均呈良好的线性关系(r >0.995 0),日内和日间精密度、稳定性、提取回收率和基质效应试验结果的RSD均小于10%;3种紫杉醇脂肪酸酯脂质体PTX-MA-L、PTX-PA-L和PTX-SA-L在小鼠体内的半衰期(t1/2)分别为14.78、44.49和69.32 h,清除率(CL)分别为29.06、24.94和13.74 L·kg/h。 结论 该方法专属性高、灵敏、操作简便、稳定性好,可用于小鼠血浆中紫杉醇脂肪酸酯的含量测定。小鼠体内药代动力学研究结果表明,随脂肪酸碳链增加,紫杉醇脂肪酸酯在小鼠体内t1/2呈大幅延长,清除率则显著降低,提示紫杉醇经不同链长饱和脂肪酸酯化修饰可改变其体内药代动力学特性,从而为紫杉醇脂肪酸酯前药的纳米制剂研发提供科学依据。 -
关键词:
- 紫杉醇 /
- 脂肪酸酯 /
- 前药 /
- 高效液相色谱-串联质谱法 /
- 药动学
Abstract:Objective To establish an UPLC-MS/MS method for determinating content of three paclitaxel fatty acid esters such as paclitaxel myristate (PTX-MA), paclitaxel palmitate (PTX-PA) and paclitaxel myristate (PTX-SA) in mouse plasma, and preliminarily investigate the pharmacokinetic characteristics of their liposomes in mice. Methods Eclipse Plus C8 chromatography column (2.1 mm×50 mm, 1.8 μm) was used with different proportions of 0.2% formic acid aqueous solution (A) and methanol (B) mixture as mobile phase for gradient elution at a flow rate of 0.3 ml/min. The collum temperature was 30℃. The sample injection volume was 10 μl. The triple quadrupole mass series spectrometer was used as multi-reaction monitoring (MRM). Results PTX-MA, PTX-PA and PTX-SA all exhibited a good linear relationship in the range of 5.0~500.0 ng/ml (r> 0.9950 ). Their RSD of precision, stability, extraction recovery rate and matrix effect test results was all less than 10%. The half-lives (t1/2) for liposomes of three paclitaxel fatty acid esters PTX-MA-L、PTX-PA-L and PTX-SA-L in mice were 14.78 h, 44.49 h and 69.32 h individually, and their clearance rates (CL) were 29.06 L·kg/h, 24.94 L·kg/h and 13.74 L·kg/h, respectively.Conclusion This method had high specificity, sensitivity, easy operation and good stability, which could be used for the determination of paclitaxel fatty acid esters in mouse plasma. The results of pharmacokinetic studies in mice showed that t1/2 for paclitaxel fatty acid esters were significantly prolonged, and the clearance rate were significantly reduced with the length of fatty acid carbon chains increasement, which indicated that esterification of paclitaxel with different chain length saturated fatty acids could obviously alter its in vivo pharmacokinetic properties, which provided scientific basis for the research and development of nano formulations of paclitaxel fatty acid ester prodrug. -
Key words:
- Paclitaxel /
- Fatty acid esters /
- Prodrug /
- UPLC-MS/MS /
- Pharmacokinetics
-
复方金钱草颗粒由广金钱草、车前草、光石韦以及玉米须四味中药材组成,现执行标准为《中国药典》(一部)2015年版及国家食品药品监督管理总局药品补充批件(2016B00026)。该药具有清热利湿、通淋排石的作用,在临床上用于治疗湿热所致的热淋、石淋,症见尿频、尿急、尿痛、腰痛的患者,以及泌尿系结石、尿路感染见上述证候者[1]。现代药理学研究也显示复方金钱草颗粒具有防治草酸钙结石形成、促进输尿管蠕动和增加尿量、抗炎[2-5]及增加冠脉血流量、保肝利胆[3-5]、免疫调节等作用[5]。复方金钱草颗粒中的化学成分包含黄酮类[5-8]、甾醇类[5,7-9]、生物碱类[5-7]、萜类[5,7,9]、酚酸类[5-6,8]、挥发油[5,7]、多糖类等[6-7]。由于复方金钱草颗粒成分复杂,目前尚无全面的化学成分鉴定工作。本研究致力于建立起一种快速有效的系统分析方法,同时定性地鉴别其多种化合物成分,为其有效成分研究提供依据。
1. 试剂与仪器
1.1 试剂
分析纯无水乙醇(中国医药集团上海化学试剂公司);质谱纯甲酸、质谱纯乙腈、0.22 µm滤膜(德国Merck集团);复方金钱草颗粒(规格:10g,广西万通制药有限公司)
1.2 仪器
BP121S电子分析天平(德国Sartorius公司);Milli-Q A10超纯水净化系统(美国Millipore公司);KQ-400KDB超声波清洗器(400W, 40KHz;昆山市超声仪器有限公司);X1R-230 V台式离心机(美国Thermo Fisher Scientific公司);Agilent 1290超高效液相色谱仪、Agilent 6538四极杆飞行时间质谱仪(美国安捷伦公司)。
2. 试验方法
2.1 色谱和质谱条件
2.1.1 色谱条件
采用Agilent 1290超高效液相色谱仪(UHPLC),色谱柱为XBridge BEH C18柱(2.1 mm×100 mm, 2.5 µm ),柱温为40 ℃,进样量为3 µl,流动相由0.1%甲酸水(A)和0.1%甲酸乙腈(B)组成,梯度洗脱,洗脱条件见表1,分析时间为19 min,流速为0.4 ml/min。
表 1 流动相梯度洗脱条件时间(t/min) A(%) B(%) 0 98 2 2 98 2 12 40 60 17 2 98 19 2 98 2.1.2 质谱条件
采用Agilent 6538四极杆飞行时间质谱仪(Q-TOF/MS),质谱参数如下:电喷雾离子源(正离子模式);质谱扫描范围: 50~1500 m/z;干燥气温度为350 ℃;干燥气流速为11 L/min;雾化气压力为45 psig;毛细管电压为4000 V;碎片电压为120 V;Skimmer电压为60 V;参比离子m/z为121.0509和922.0098。
2.2 供试品溶液制备
精密称取2.0 g复方金钱草颗粒,置于50 ml具塞三角烧瓶中,加入55 %乙醇提取溶剂25 ml,称定质量并记录,在55 ℃水浴中超声加热回流提取药液10 min,经室温冷却后,再次称定并用提取溶剂补足损失的质量,15000 r/min离心20 min,取上清液并经0.22 µm滤膜过滤,得提取液。
2.3 复方金钱草颗粒中化学成分数据库的建立
复方金钱草颗粒由广金钱草、车前草、光石韦和玉米须等四味中药材组成。通过搜索中国知网、万方数据、PubMed等网站中关于复方金钱草颗粒及其四味中药材的文献,检索上海有机化学研究所的化学专业数据库、TCMID来建立复方金钱草颗粒化学成分数据库,其相关信息包括化合物中英文名称、分子式以及相对分子质量。
3. 结果与讨论
3.1 四极杆飞行时间质谱成分筛查
复方金钱草颗粒UHPLC-Q-TOF/MS总离子流图见图1。应用Qualitative Analysis质谱分析软件计算可能的分子组成(误差<8 ppm),结合复方金钱草颗粒化学成分数据库,对复方金钱草颗粒提取溶液所得色谱图上色谱峰进行分析,利用精确分子量匹配和碎片离子归属策略,初步尝试鉴定出51个化学成分,结果如表2所示。
表 2 复方金钱草颗粒化学成分鉴别分析结果序号 名称 分子式 M+X m/z 质量 误差(ppm) 1 b 水苏糖 C24 H42 O21 (M+H)+ 667.2312 666.2244 3.86 2 b 桂皮酸 C9 H8 O2 (M+H)+ 149.0594 148.052 −3.2 3 abd 原儿茶酸 C7 H6 O4 (M+H)+ 155.0335 154.0261 −3.44 /龙胆酸 4 a 广金钱草内酯 C8 H13 N O3 (M+H)+ 172.0968 171.0894 −0.75 5 bd 咖啡酸 C9 H8 O4 (M+H)+ 181.0493 180.0421 −0.79 6 abcd 绿原酸 C16 H18 O9 (M+H)+ 355.1028 354.0955 1.1 7 b 丁香酸 C9 H10 O5 (M+H)+ 199.0607 198.0531 1.24 8 a 香橙素 C15 H12 O6 (M+H)+ 289.0716 288.0641 2.62 9 ab 黄芩素 C15 H10 O5 (M+H)+ 271.0609 270.0535 2.66 /染料木素 /芹菜素 10 c (R/S)-eriodictyol-8-C-β-D-glucopyranoside C21 H22 O11 (M+H)+ 473.1063 450.118 3.88 11 a 芸香苷 C27 H30 O16 (M+H)+ 611.1623 610.1551 2.79 12 ac 槲皮素 C15 H10 O7 (M+H)+ 303.0505 302.0432 1.78 /3,5,7,4'-tetrahydroxy-coumaronochromone /6-羟基木犀草素 13 b 大车前苷 C17 H24 O10 (M+H)+ 389.1458 388.1385 4.04 14 bd 对-香豆酸 C9 H8 O3 (M+H)+ 165.0547 164.0476 1.45 15 a homoadonivernite C26 H28 O15 (M+H)+ 581.152 580.1445 2.96 /刺苞菊苷 16 a 维采宁-2 C27 H30 O15 (M+H)+ 595.1672 594.1597 2.08 17 b 桃叶珊瑚苷元 C9 H12 O4 (M+H)+ 185.0816 184.0742 3.46 18 a 6-C-glycopyranosyl-8-C-xyloeyl apigenin C26 H28 O13 (M+H)+ 549.1621 548.1552 4.12 /6-C-glycopyranosyl-8-C-glycopyranosyl apigenin 19 ab 阿魏酸 C10 H10 O4 (M+H)+ 195.0654 194.058 0.71 /咖啡酸甲酯 20 b 黑麦草内酯 C11 H16 O3 (M+H)+ 197.117 196.1097 −1.16 21 b 车前黄酮苷 C21 H20 O11 (M+H)+ 449.1089 448.1016 2.34 22 b 木犀草素-7-O-葡萄糖苷 C21 H20 O11 (M+H)+ 449.1089 448.1016 2.34 23 a 异槲皮苷 C21 H20 O12 (M+H)+ 465.1033 464.0965 2.16 /紫花杜鹃素丁 /6-hydroxyl luteolin 7-O-glucoside 24 c 杧果苷 C19 H18 O11 (M+H)+ 423.0933 422.0861 2.84 /异杧果苷 25 a 山柰酚-3-O-芸香糖苷 C27 H30 O15 (M+H)+ 595.1672 594.1597 2.08 26 a 维采宁-1 C26 H28 O14 (M+H)+ 565.1572 564.1498 3.42 /维采宁-3 /异夏佛塔雪轮苷 /夏弗塔雪轮苷 27 abd 对羟基苯甲酸 C7 H6 O3 (M+H)+ 139.039 138.0317 0.31 /水杨酸 /原儿茶醛 28 a 异荭草素 C21 H20 O11 (M+H)+ 449.1089 448.1016 2.34 29 a 牡荆素 C21 H20 O10 (M+H)+ 433.1137 432.1064 1.65 /异牡荆素 /大波斯菊苷 /染料木苷 30 a 三叶豆苷 C21 H20 O11 (M+H)+ 449.1089 448.1016 2.34 31 ab 5, 7-dihydroxy-2', 4'-dimthoxy-isoflavanone-7-O-β-glucopyranoside C23 H26 O11 (M+H)+ 479.1563 478.149 3.11 /[(2R,3S,4S,5R,6R)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate /木通苯乙醇苷A /木通苯乙醇苷B /车前草苷 A /车前草苷 B /3,4-Dihydroxyphenethylalcohol-6-O-caffeoyl-β-D-glucoside /去鼠李糖洋丁香酚苷 32 b 车前草苷D C29 H36 O16 (M+H)+ 663.19 640.1989 −2.26 /大车前苷 33 b 异洋丁香酚苷 C29 H36 O15 (M+H)+ 647.195 624.2038 −2.67 /洋丁香酚苷 /Beta-D-Glucopyranoside, 2-(3,4-dihydroxyphenyl)ethyl 3-O-(6-deoxy-alpha-L-mannopyranosyl)-, 6-(3-(3,4-dihydroxyphenyl)-2-propenoate), (E)- 34 b 黄芩苷 C21 H18 O11 (M+H)+ 447.0938 446.0864 3.35 35 b 高车前苷 C22 H22 O11 (M+H)+ 463.1239 462.117 1.7 36 a 5, 7-Dihydroxy-2'-methoxy-3', 4'-methylenedioxy-isoflavanone-7-O-β-glucopyranoside C23 H24 O12 (M+H)+ 493.136 492.1282 2.96 37 abcd 山柰酚 C15 H10 O6 (M+H)+ 287.0558 286.0482 1.45 /木犀草素 /2’-Hydroxygenistein /高山黄芩素 38 a 5, 7-Dihydroxy-2', 3', 4'-trimethoxy-isoflavanone-7-O-β-glucopyranoside C24 H28 O12 (M+H)+ 509.1668 508.1596 2.93 39 b 异角胡麻苷 C31 H40 O15 (M+Na)+ 675.2281 652.2391 3.69 /角胡麻苷 40 a 5, 7-Dihydroxy-2'-methoxy-3', 4'-methylenedioxy-isoflavanone C17 H14 O7 (M+H)+ 331.0824 330.0748 2.45 41 a 5, 7-Dihydroxy-2', 3', 4'-trimethoxy-isoflavanone C18 H18 O7 (M+H)+ 347.112 346.105 −0.6 42 a Homoferreirin C17 H16 O6 (M+H)+ 317.1034 316.0959 3.82 43 a 大豆皂苷 I C48 H78 O18 (M+H)+ 965.5112 942.5214 2.75 44 b 桃叶珊瑚苷 C15 H22 O9 (M+H)+ 347.1352 346.1279 4.44 45 d 亚油酸 C18 H32 O2 (M+H)+ 303.2303 280.2408 2.2 46 d 邻苯二甲酸二丁酯 C16 H22 O4 (M+H)+ 301.1421 278.1531 4.47 47 d Bis[(2R)-2-ethylhexyl] benzene-1, 2-dicarboxylate C24 H38 O4 (M+H)+ 413.2681 390.2798 7.14 注:a. 广金钱草中的成分;b. 车前草中的成分;c. 光石韦中的成分;d. 玉米须中的成分 3.2 同位素分布验证
对于以上鉴别分析结果,在数据匹配的基础上,我们还利用峰物质特征的同位素分布进行验证。以4号峰广金钱草内酯和11号峰芸香苷为例,采用Qualitative Analysis软件的“显示预测的同位素分布”功能分别对这两种化合物的同位素峰进行匹配,其结果见图2和图3。图中结果明显可见,该两种离子理论上的同位素峰强度比、出峰位置(由方框表示)与实际测得的(由竖线峰表示)结果吻合良好,4号化合物广金钱草内酯的吻合分数为99.94,11号化合物芸香苷的吻合分数为95.28。以上结果证明鉴别分析结果准确。
3.3 同分异构体的区分
实验中我们发现复方金钱草颗粒中含有多组同分异构体,本文采用ACD/ChemSketch软件计算化合物的油水分配系数logP值判断出峰顺序。以16号峰维采宁-2与25号峰山柰酚-3-O-芸香糖苷为例,在UHPLC-Q-TOF/MS总离子流图中,提取m/z为595.1672的离子,结果见图4。
维采宁-2和山柰酚-3-O-芸香糖苷的结构式如图5所示。采用ACD/ChemSketch软件计算它们的油水分配系数logP值分别为−0.10(±0.94)和1.96(±1.45),表明山柰酚-3-O-芸香糖苷的疏水性更强,在反相色谱柱中的保留时间则越长,确定这两个化合物的出峰顺序维采宁-2在前,山柰酚-3-O-芸香糖苷在后,从而对异构体的色谱峰进行相应归属。
我们还用此方法对同一分子式的一组多个同分异构体进行logP值的排序,以确定这些成分的出峰顺序来进行归属。例如在总离子流图中,第21、22、28、30号峰为一组同分异构体,分别为车前黄酮苷、木犀草素-7-O-葡萄糖苷、异荭草素和三叶豆苷,其结构式如图6所示。在UHPLC-Q-TOF/MS总离子流图中,提取m/z为449.1089的离子,结果见图7。对它们的油水分配系数logP值进行排序,可知该4种同分异构体的出峰顺序,结果如表3所示。
表 3 同分异构体(21、22、28和30号峰)的归属结果出峰编号 化合物名称 logP值 保留时间(t/min) 21 车前黄酮苷 −0.30±0.64 11.320 22 木犀草素-7-O-葡萄糖苷 −0.09±0.64 11.675 28 异荭草素 1.58±0.88 13.999 30 三叶豆苷 1.95±1.43 14.355 4. 讨论
本研究采用UHPLC-Q-TOF/MS技术,实现了对中成药复方金钱草颗粒中多成分的快速定性分析,共鉴定出2个苯乙醇苷类、1个低聚糖类、8个酚酸类、27个黄酮类、1个生物碱类、5个萜类、1个脂肪酸类、2个酯类成分(共47个活性成分),该技术为中药复方多成分分析提供了一种有效、可靠的方法,也同样适用于其他中药复方复杂体系的化学成分分析。
由于中药复方化学成分较单味药材更多更复杂,因而同分异构体的情况非常普遍。使用的四极杆复合飞行时间质谱(Q-TOF)在保持了较高的检测灵敏度以及质量准确性的前提下,可以对样本中所有的成分的质荷比进行全谱采集。这种技术使数据采集效率有了极大的提高,更加适用于中药重要复杂体系化学成分的鉴定。
虽然本研究基于复方金钱草颗粒化学成分数据库,利用精确分子量匹配和碎片离子归属策略并辅以软件计算的方法鉴定出了多个化学成分,但仍有大量的同分异构体无法被有效地区分开来,因此,在下一步实验中,使用标准品对照的方法进行更精确地鉴定。
-
表 1 PTX-MA、PTX-PA和PTX-SA的标准曲线参数
对照样品 回归方程 r 线性范围(ng/ml) PTX-MA Y=0.186 2 X−1.984 0.995 8 5.00~500.00 PTX-PA Y=0.668 5 X−12.977 0.998 4 5.00~500.00 PTX-SA Y=0.402 1 X−7.171 0.998 8 5.00~500.00 表 2 PTX-MA、PTX-PA和PTX-SA样本的精密度(n = 5)
对照样品 理论浓度(ng/ml) 日内精密度 日间精密度 实测浓度(ng/ml) 回收率(%) RSD(%) 实测浓度(ng/ml) 回收率(%) RSD(%) PTX-MA 10.00 9.93±0.83 99.36±8.32 8.38 10.37±0.61 103.67±6.06 5.84 250.00 242.29±10.93 96.84±4.51 4.51 247.42±5.30 98.97±2.12 2.14 375.00 371.31±6.30 99.02±1.68 1.70 373.37±6.20 99.57±1.65 1.66 PTX-PA 10.00 9.83±0.50 98.28±5.00 5.09 10.25±0.55 102.53±5.52 5.38 250.00 248.42±6.81 99.37±2.72 2.74 246.93±5.74 98.77±2.29 2.32 375.00 373.79±8.70 99.68±2.32 2.33 371.59±4.12 99.09±1.10 1.11 PTX-SA 10.00 9.59±0.51 95.90±5.08 5.30 10.33±0.67 103.27±6.72 6.50 250.00 248.81±7.89 99.53±3.16 3.17 245.92±5.04 98.37±2.01 2.05 375.00 374.36±8.81 99.83±2.35 2.35 371.26±2.43 99.00±0.65 0.65 表 3 小鼠血浆中PTX-MA、PTX-PA和PTX-SA的提取回收率和基质效应(n = 3)
对照样品 理论浓度(ng/ml) 回收率(%) RSD(%)a 基质效应(%) RSD(%)b PTX-MA 10.00 79.82±6.60 8.28 95.36±6.55 6.87 250.00 88.35±2.84 3.22 96.28±3.59 3.73 375.00 92.08±2.46 2.67 98.86±1.46 1.48 PTX-PA 10.00 73.34±7.24 9.88 94.28±1.96 2.08 250.00 83.58±2.24 2.68 98.46±1.86 1.89 375.00 89.47±1.51 1.68 98.88±0.68 0.69 PTX-SA 10.00 61.90±4.11 6.63 95.90±5.08 5.30 250.00 77.26±2.88 3.73 98.78±2.22 2.25 375.00 84.43±1.21 1.44 99.08±1.01 1.02 注:a:回收率的相对标准偏差;b:基质效应的相对标准偏差。 表 4 小鼠尾静脉注射3种紫杉醇脂肪酸酯前药脂质体药代动力学参数(n = 3)
关键参数 单位 PTX-MA-L PTX-PA-L PTX-SA-L Cmax ng/L 226 436.10±4 932.89 289 171.80±5 311.62 333 508.00±3 464.10 AUC0-14 d ng·h/L 502 384.75±3 464.10 776 973.44±5 196.15 1 668 984.05±6 350.85 AUC0-∞ ng·h/L 503 800.86±8 082.90 777 835.54±6 429.10 1 669 696.54±5 773.50 t1/2 h 14.78±2.00 44.49±3.51 69.32±2.15 V L/kg 45.68±1.00 62.57±1.53 68.58±3.10 CL L·kg/h 29.06±2.52 24.94±2.08 13.74±2.52 -
[1] VYAS D M, KADOW J F. Paclitaxel: a unique tubulin interacting anticancer agent[J]. Prog Med Chem, 1995, 32:289-337. [2] ADAMS J D, FLORA K P, GOLDSPIEL B R, et al. Taxol: a history of pharmaceutical development and current pharmaceutical concerns[J]. J Natl Cancer Inst Monogr, 1993, 15:141-147. [3] ABET V, FILACE F, RECIO J, et al. Prodrug approach: An overview of recent cases[J]. Eur J Med Chem, 2017, 127:810-827. doi: 10.1016/j.ejmech.2016.10.061 [4] MIKHALIN A A, EVDOKIMOV N M, FROLOVA L V, et al. Lipophilic prodrug conjugates allow facile and rapid synthesis of high-loading capacity liposomes without the need for post-assembly purification[J]. J Liposome Res, 2015, 25(3):232-260. doi: 10.3109/08982104.2014.992022 [5] HARADA H, YAMASHITA U, KURIHARA H, et al. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga[J]. Anticancer Res, 2002, 22(5):2587-2590. [6] LORSCHEIDER M, TSAPIS N, UR-REHMAN M, et al. Dexamethasone palmitate nanoparticles: an efficient treatment for rheumatoid arthritis[J]. J Control Release, 2019, 296:179-189. doi: 10.1016/j.jconrel.2019.01.015 [7] MENG Z, LV Q, LU J, et al. Prodrug strategies for paclitaxel[J]. Int J Mol Sci, 2016, 17(5):796-819. doi: 10.3390/ijms17050796 [8] CHEN K J, PLAUNT A J, LEIFER F G, et al. Recent advances in prodrug-based nanoparticle therapeutics[J]. Eur J Pharm Biopharm, 2021, 165:219-243. doi: 10.1016/j.ejpb.2021.04.025 [9] FANG J Y, AL-SUWAYEH S A. Nanoparticles as delivery carriers for anticancer prodrugs[J]. Expert Opin Drug Del, 2012, 9(6):657-669. doi: 10.1517/17425247.2012.679927 [10] 程丹, 余侬, 许幼发, 等. 紫杉醇棕榈酸酯脂质体的制备及初步药效学和安全性评价[J]. 中国药学杂志, 2018, 53(8):614-619. doi: 10.11669/cpj.2018.08.010 期刊类型引用(7)
1. 银莹,刘雪梅. 复方金钱草颗粒在尿路结石治疗中的应用研究进展. 陕西中医. 2024(05): 711-714 . 百度学术
2. 吴佩莹,龚小妹,候小利,宋志军,欧春丽,张华,吴文华,刘艳芳,王硕. 基于网络药理学和动物实验探讨复方金钱草颗粒对慢性细菌性前列腺炎大鼠的防治作用. 中成药. 2024(08): 2795-2801 . 百度学术
3. 张潇予,夏凯柔,宋雪瑜,刘培,刘玉萍,刘谊民,陈彦,张黄琴. 瓜蒌、瓜蒌皮、瓜蒌子的体内代谢产物鉴定比较分析. 中草药. 2024(20): 6845-6861 . 百度学术
4. 刘婷,刘平平,胡深德,成莹莹,陆俊. 广金钱草乙醇提取物不同极性部位抗氧化抗菌活性研究. 农产品加工. 2023(15): 19-23+28 . 百度学术
5. 聂溶,蔡林雪,孟倩颖. 一测多评法同时测定结石通片中7种成分含量. 中国药业. 2023(18): 85-89 . 百度学术
6. 胡亮,周明,王银红,罗疆南,孙辉,文庆. 基于特征性成分的肾石通颗粒中金钱草投料真实性考察. 中国药业. 2023(23): 88-92 . 百度学术
7. 杨成,胡锴,韩鹏昭,宋军营,张振强,孙宁,王潘,谢治深,李中华. 天智颗粒的化学成分及入血成分定性分析. 中国药房. 2022(24): 2973-2977+2984 . 百度学术
其他类型引用(1)
-