-
高寒地区战斗的特殊自然地理环境对战斗行动带来了很大的影响,人员极易冻伤,易患皮肤病、感冒和雪盲等病症,伤病员救治和后送任务重,后勤保障任务艰巨复杂[1]。因此,高原高寒环境对驻训的野战卫生装备的运输、机动、使用有特殊的要求[2]。药材保障是影响救治的主要因素之一,如此极端的环境对官兵野外训练和作战的药品保障也是一种极大的考验。
甲硝唑是一种抗厌氧菌和抗滴虫药,主要用于治疗或预防厌氧菌引起的系统或局部感染,治疗破伤风常与破伤风抗毒素(TAT)联用[3]。作为一种抗菌药物,在战争条件下是不可或缺的。它主要的剂型为片剂和注射液,而注射液在严寒环境下容易冻结,应模拟药品在运输与使用过程中可能碰到的温度条件进行热循环考察以评价药品的稳定性[4]。本研究从药材保障实际需求出发,对模拟严寒环境下的甲硝唑氯化钠注射液的稳定性进行考察,可为同类药品暴露在极端严寒环境下的储存和使用提供数据支持。
质控图是指对过程质量加以测定、记录从而评估和监察过程是否处于控制状态的一种统计方法设计的图,是实验室进行内部质量控制的重要工具之一[5]。质控图可以直观地反映检测过程的状态,对于检测实验室宏观的、长期的质量控制有着重要的意义。本研究利用质控图对甲硝唑氯化钠注射液的含量测定结果进行分析,能够及时发现实验过程中的异常,以便采取相应的纠正措施和预防措施,保证药物质量检验的可控。
-
将甲硝唑氯化钠注射液放置于−20 ℃冰箱冷冻后,分别在室温,40 ℃恒温,60 ℃水浴条件下解冻,具体条件如表1所示,其中基于运输条件考虑模拟环境的样品在每次冻融循环后分别取样,基于使用条件考虑模拟环境的样品分别在第3、6、9、12、15、18次冻融循环后取样测定[6]。
表 1 样品冻融条件
模拟环境 冷冻条件 解冻条件 循环次数 基于运输条件 −20 ℃冷冻2 d 40 ℃恒温解冻2 d 3次 基于使用条件 −20 ℃冷冻1 d 室温解冻至完全 18次 60 ℃水浴解冻至完全 -
色谱柱为Agilent Extend C18 (250 mm×4.6 mm,5 μm);流动相为甲醇-水(20:80,V/V);检测波长320 nm;流速1.0 ml/min,进样体积10 μl。
-
将甲硝唑对照品置于105 ℃下干燥2 h,取10 mg精密称定,置于10 ml容量瓶中,用流动相稀释并定容,即得浓度为1.0 mg/ml的甲硝唑对照品溶液。
-
精密移取甲硝唑氯化钠注射液0.5 ml置于10 ml量瓶,用流动相稀释并定容,即为供试品溶液。
-
分别取对照品溶液及供试品溶液各10 μl,按“2.2”项下的色谱条件进样分析,结果如图1所示,供试品溶液在与对照品溶液对应位置出现相对应的色谱峰,空白溶剂无干扰,方法专属性良好。
-
将“2.3”项下制备的对照品溶液依次稀释,配制成浓度分别为0.010、0.050、0.125、0.250、0.500、1.000 mg/ml的系列溶液,作为线性工作溶液。按“2.2”项下色谱条件,浓度由低到高依次进样,以甲硝唑对照品的浓度(X,mg/ml)为横坐标,峰面积(Y)为纵坐标,进行线性回归,得到回归方程Y=31387979 X+0.1903,r=1.000,结果表明,甲硝唑在0.010~1.000 mg/ml范围内与峰面积呈良好的线性关系。
-
取甲硝唑对照品溶液适量(0.25 mg/ml),按“2.2”项下色谱条件在1 d以内连续进样6次,以及连续3 d分别进样,根据所得峰面积分别考察日内精密度和日间精密度。结果显示,日内精密度RSD为0.24%;日间精密度RSD为1.06%,表明方法的精密度良好。
-
精密量取甲硝唑氯化钠注射液样品6份,各0.5 ml,按“2.4”项下方法分别制成供试品溶液,按“2.2”项下色谱条件测定。结果显示每100 ml注射液中甲硝唑的平均含量为0.504 g,RSD为1.26%,表明方法的重复性良好。
-
取同一份供试品溶液,在室温下放置0、3、6、9、12、18、24 h后,分别按“2.2”项下色谱条件进样分析,考察溶液的稳定性,结果显示RSD为0.05%,表明供试品溶液在室温条件下24 h内稳定。
-
取已知含量的甲硝唑样品0.2 ml(含甲硝唑0.1 mg)共9份,每3份为1组,按低、中、高3个水平分别加入适当浓度的对照品溶液(相当于样品中含量的80%、100%、120%),按“2.2”项下色谱条件进样分析,结果显示甲硝唑的平均回收率为101.03%,RSD为1.17%(n=9)。
-
取不同冻融条件下的甲硝唑氯化钠注射液,按“2.4”项下方法制备供试品溶液,进样测定,以外标法分别计算各样品中甲硝唑的含量,结果如表2所示。
表 2 各阶段样品中甲硝唑的含量测定结果(按标示量计/%)
冻融条件 冻融循环周期 0 1 2 3 6 9 12 15 18 室温解冻 100.8 − − 101.68 101.20 100.92 96.92 96.16 95.84 60 ℃水浴解冻 − − 100.84 98.88 100.84 101.04 100.84 101.36 40 ℃恒温解冻 99.80 99.16 100.40 − − − − − 注:“−”表示无测定值。
Freeze/thaw stability and quality control chart analysis of metronidazole sodium chloride injection
-
摘要:
目的 考察极端严寒环境及不同冻融条件对甲硝唑氯化钠注射液稳定性的影响。 方法 模拟甲硝唑氯化钠注射液在极端寒冷环境下的冻结过程,并给予适当的条件使其融化。采用HPLC法测定甲硝唑的含量,分别考察室温和60 ℃水浴解冻及冻融次数对甲硝唑含量的影响,并对变化情况作质控图分析。 结果 甲硝唑在0.01~1.00 mg/ml范围内线性关系良好,r=1.000,平均回收率101.38%(RSD=0.94%),符合方法学要求。样品在−20 ℃冷冻,60 ℃水浴解冻18次,稳定性良好;室温解冻时,容易形成针状结晶,含量降低。 结论 在极端严寒环境下甲硝唑氯化钠注射液的稳定性会受冻融条件的影响,使用时应当尽量减少其冻融次数,避免室温解冻。 Abstract:Objective To investigate the effect of different freezing thawing conditions on the stability of metronidazole sodium chloride injection in extreme cold environment. Methods The freezing process of metronidazole sodium chloride injection in extremely cold environment was simulated and appropriate conditions were given to melt. The effects of room temperature, 60 ℃ water bath thawing and freeze-thaw times on the content of metronidazole were investigated by HPLC, and the changes were analyzed by quality control chart. Results The linear range of metronidazole was 0.01~1.00 mg/ml and the relationship was acceptable, r=1.000, the average recovery was 101.03% (RSD=1.17%), which met the requirements of methodology. The samples were frozen at −20 ℃ and thawed in 60 ℃ water bath for 18 times with good stability. However, when thawed at room temperature, acicular crystals formed and the content decreased. Conclusion In extreme cold environment, the stability of metronidazole sodium chloride injection could be affected by freezing and thawing conditions. Therefore, in the use of Metronidazole and Sodium Chloride Injection, the number of freeze-thaw cycles should be minimized, and try to avoid thaw at room temperature. -
表 1 样品冻融条件
模拟环境 冷冻条件 解冻条件 循环次数 基于运输条件 −20 ℃冷冻2 d 40 ℃恒温解冻2 d 3次 基于使用条件 −20 ℃冷冻1 d 室温解冻至完全 18次 60 ℃水浴解冻至完全 表 2 各阶段样品中甲硝唑的含量测定结果(按标示量计/%)
冻融条件 冻融循环周期 0 1 2 3 6 9 12 15 18 室温解冻 100.8 − − 101.68 101.20 100.92 96.92 96.16 95.84 60 ℃水浴解冻 − − 100.84 98.88 100.84 101.04 100.84 101.36 40 ℃恒温解冻 99.80 99.16 100.40 − − − − − 注:“−”表示无测定值。 -
[1] 熊武一, 周家法. 军事大辞海·下册[M], 北京: 长城出版社, 2000: 2535. [2] 骆文敏, 王艳, 申丽. 高原寒区、戈壁沙漠环境下野战卫生装备配置特点探讨[J]. 世界最新医学信息文摘, 2017, 17(57):206-207. [3] 国家药典委员会. 中华人民共和国药典(二部)2020年版[S]. 北京: 中国医药科技出版社, 2020: 253-254. [4] SHEA M L, DEBELL R M, BONDI K R, et al. Drug exposed to extreme cold: the military perspective[R]. Defense Technical Information Center, 1981. [5] 中国合格评定国家认可委员会. 化学分析实验室内部质量控制指南—质控图的应用[S]. CNAS-GL027: 2018. [6] RAYFIELD W J, KANDULA S, KHAN H, et al. Impact of freeze/thaw process on drug substance storage of therapeutics[J]. J Pharm Sci,2017,106(8):1944-1951. doi: 10.1016/j.xphs.2017.03.019 [7] 孙佳玲, 周迪. 统计学在药品检验工作中的应用[J]. 中国卫生产业, 2018, 15(23):166-167. [8] Food and Drug Administration. U. S. Department of Health and Human Services , Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER) Guidance for Industry Q1A Stability Testing New Drug Substances Products[S]. Rockville: 2001: 7.