留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

新型含喹啉和噻吩结构的抗真菌化合物的设计与合成

庞磊 赵晶 倪廷峻弘 臧成旭 丁子超 张大志 姜远英

庞磊, 赵晶, 倪廷峻弘, 臧成旭, 丁子超, 张大志, 姜远英. 新型含喹啉和噻吩结构的抗真菌化合物的设计与合成[J]. 药学实践与服务, 2017, 35(1): 17-21,86. doi: 10.3969/j.issn.1006-0111.2017.01.005
引用本文: 庞磊, 赵晶, 倪廷峻弘, 臧成旭, 丁子超, 张大志, 姜远英. 新型含喹啉和噻吩结构的抗真菌化合物的设计与合成[J]. 药学实践与服务, 2017, 35(1): 17-21,86. doi: 10.3969/j.issn.1006-0111.2017.01.005
PANG Lei, ZHAO Jing, NI Tingjunhong, ZANG Chengxu, DING Zichao, ZHANG Dazhi, JIANG Yuanying. Design and synthesis of novel antifungal compounds bearing quinoline and thiophene moieties[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 17-21,86. doi: 10.3969/j.issn.1006-0111.2017.01.005
Citation: PANG Lei, ZHAO Jing, NI Tingjunhong, ZANG Chengxu, DING Zichao, ZHANG Dazhi, JIANG Yuanying. Design and synthesis of novel antifungal compounds bearing quinoline and thiophene moieties[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 17-21,86. doi: 10.3969/j.issn.1006-0111.2017.01.005

新型含喹啉和噻吩结构的抗真菌化合物的设计与合成

doi: 10.3969/j.issn.1006-0111.2017.01.005
基金项目: 国家自然科学基金(81573473;21272270)

Design and synthesis of novel antifungal compounds bearing quinoline and thiophene moieties

  • 摘要: 目的 基于喹啉类和噻吩类抗真菌化合物的构效关系,设计合成含喹啉和噻吩结构片段的新型抗真菌化合物,并测试其对白念珠菌的抑制活性。 方法 以5-氰基噻吩-2-甲醛或者5-氰基噻吩-3-甲醛为起始原料,经还原氨化、氰基还原、与喹啉甲酸或异喹啉甲酸的酰胺化等反应,合成13个目标化合物,并通过1H NMR和MS确证其化学结构,以微量液基稀释法测定这些化合物体外抗白念珠菌SC5314活性。 结果 目标化合物均具有一定的抗真菌活性,其中化合物 6k 显示很好的抗真菌活性,MIC80值为0.5 μg/ml,与对照药氟康唑相当。 结论 所设计合成的含喹啉和噻吩结构片段的新型化合物具有较好的体外抗真菌活性,值得深入研究。
  • [1] Martín-Pe a A, Aguilar-Guisado M, Cisneros JM. Does the current treatment of invasive fungal infection need to be reviewed[J]. Enferm Infecc Microbiol Clin, 2014, 32(8):523-528.
    [2] Groll AH, Lumb J. New developments in invasive fungal disease[J]. Future Microbiol, 2012, 7(2):179-184.
    [3] Pfaller MA, Hata K, Jones RN, et al. In vitro activity of a novel broad-spectrum antifungal, E1210, tested against Candida spp. as determined by CLSI broth microdilution method[J]. Diagn Microbiol Infect Dis, 2011, 71(2):167-70.
    [4] Maebashi K, Kudoh M, Nishiyama Y, et al. A novel mechanism of fluconazole resistance associated with fluconazole sequestration in Candida albicans isolates from a myelofibrosis patient[J]. Microbiol Immunol, 2002, 46(5):317-326.
    [5] Jia XM, Wang Y, Jia Y, et al. RTA2 is involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in Candida albicans[J]. Cell Mol Life Sci, 2009, 66(1):122-34.
    [6] Espinel-Ingroff A, Pfaller M, Cantón E, et al. Emerging resistance to azoles and echinocandins:clinical relevance and laboratory detection[J]. Curr Fungal Infect Rep, 2010, 4(3):186-195.
    [7] Xia Lk, Idhayadhulla A, Lee YR, et al. Microwave-assisted synthesis of diverse pyrrolo[3,4-c]quinoline-1,3-diones and their antibacterial activities[J]. ACS Comb Sci, 2014, 16(7):333-341.
    [8] Musiol R, Serda M, Hensel-Bielowka S, et al. Quinoline-based antifungals[J]. Curr Med Chem, 2010, 17(18):1960-1973.
    [9] Chen M, Chen H, Ma JW, et al. Synthesis and anticancer activity of novel quinoline-docetaxel analogues[J]. Bioorg Med Chem Lett, 2014, 24(13):2867-2870.
    [10] Musiol R. Quinoline-based HIV integrase inhibitors[J]. Curr Pharm Des, 2013, 19(10):1835-1849.
    [11] Zuo R, Garrison AT, Basak A, et al. In vitro antifungal and antibiofilm activities of halogenated quinolone analogues against Candida albicans and Cryptococcus neoformans[J]. Int J Antimicrob Agents, 2016, 48(2):208-211.
    [12] Vandekerckhove S, Herreweghe SV, Willems J, et al. Synthesis of functionalized 3-, 5-, 6-and 8-aminoquinolines via intermediate (3-pyrrolin-1-yl)-and (2-oxopyrrolidin-1-yl)quinolones and evaluation of their antiplasmodial and antifungal activity[J]. Eur J Med Chem, 2015, 92(6):91-102.
    [13] Kouznetsov VV, Gómez CMM, Derita MG, et al. Synthesis and antifungal activity of diverse C-2 pyridinyl and pyridinylvinyl substituted quinolines[J]. Bioorg Med Chem, 2012, 20(21):6506-6512.
    [14] Vandekerckhove S, Tran HG, Desmet T, et al. Evaluation of (4-aminobutyloxy)quinolines as a novel class of antifungal agents[J]. Bioorg Med Chem Lett, 2013, 23(16):4641-4643.
    [15] Mohammad AIC, Satyendra D, Apurba T, et al. Synthesis and antimicrobial screening of some novel substituted thiophenes[J]. Hygeia, 2012, 4(1):112-118.
    [16] Scotti L, Scotti MT, Lima EO, et al. Experimental Methodologies and evaluations of computer-aided drug design methodologies applied to a series of 2-aminothiophene derivatives with antifungal activities[J]. Molecules, 2012, 17(3):2298-2315.
    [17] Mabkhot YN, Kaal NA, Alterary S, et al. Synthesis, In vitro antibacterial, antifungal, and molecular modeling of potent anti-microbial agents with a combined pyrazole and thiophene pharmacophore[J]. Molecules, 2015, 20(5):8712-8729.
    [18] Ajdacic V, Senerovic L, Vranic M, et al. Synthesis and evaluation of thiophene-based guanylhydrazones (iminoguanidines) efficient against panel of voriconazole-resistant fungal isolates[J]. Bioorg Med Chem, 2016, 24(6):1277-1291.
    [19] Guimar[AKa~D]es GP, Reis MYFA, Silva DTC, et al. Antifungal activity of topical microemulsion containing a thiophene derivative[J]. Braz J Microbiol, 2014, 45(2):545-550.
  • [1] 戴菲菲, 傅翔, 陈琼年, 俞苏纯.  上海某二级医院革兰阴性菌流行特征的回顾性分析 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202305005
    [2] 徐飞, 陈瑾, 鲁育含, 李志勇.  肠道菌群参与糖尿病肾病的机制研究进展 . 药学实践与服务, 2024, 42(5): 181-184, 197. doi: 10.12206/j.issn.2097-2024.202312023
    [3] 黄韵, 张正银, 金英, 郑怡菁, 李铁军, 孙莉莉.  耐碳青霉烯类肺炎克雷伯菌及大肠埃希菌临床分离株耐药性及耐药基因分析 . 药学实践与服务, 2024, 42(10): 439-444. doi: 10.12206/j.issn.2097-2024.202309059
    [4] 尹小娟, 台力丽, 肖俊峰, 季波.  铜绿假单胞菌合并按蚊伊丽莎白菌肺部感染的病例分析 . 药学实践与服务, 2024, 42(5): 223-226. doi: 10.12206/j.issn.2097-2024.202310042
    [5] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架用于创伤性脑损伤治疗 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202406034
    [6] 陈炳辰, 王思真, 郭贝贝, 杨峰.  紫杉醇棕榈酸酯的合成及其脂质体的制备与处方研究 . 药学实践与服务, 2024, 42(9): 379-384, 410. doi: 10.12206/j.issn.2097-2024.202404062
    [7] 郭灵怡, 刘艳超, 高路, 刘瑞瑶, 吕权真, 俞媛.  醋酸卡泊芬净单硬脂酸甘油酯纳米粒抗白色念珠菌感染的增效作用研究 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202310043
    [8] 史生辉, 石飞, 雷琼, 王亚峰, 吴雪花.  青藏高原肺结核合并念珠菌感染患者的病原菌分布特点及耐药率分析 . 药学实践与服务, 2024, 42(6): 260-262, 272. doi: 10.12206/j.issn.2097-2024.202304014
  • 加载中
计量
  • 文章访问数:  4225
  • HTML全文浏览量:  396
  • PDF下载量:  726
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-08
  • 修回日期:  2016-11-29

新型含喹啉和噻吩结构的抗真菌化合物的设计与合成

doi: 10.3969/j.issn.1006-0111.2017.01.005
    基金项目:  国家自然科学基金(81573473;21272270)

摘要: 目的 基于喹啉类和噻吩类抗真菌化合物的构效关系,设计合成含喹啉和噻吩结构片段的新型抗真菌化合物,并测试其对白念珠菌的抑制活性。 方法 以5-氰基噻吩-2-甲醛或者5-氰基噻吩-3-甲醛为起始原料,经还原氨化、氰基还原、与喹啉甲酸或异喹啉甲酸的酰胺化等反应,合成13个目标化合物,并通过1H NMR和MS确证其化学结构,以微量液基稀释法测定这些化合物体外抗白念珠菌SC5314活性。 结果 目标化合物均具有一定的抗真菌活性,其中化合物 6k 显示很好的抗真菌活性,MIC80值为0.5 μg/ml,与对照药氟康唑相当。 结论 所设计合成的含喹啉和噻吩结构片段的新型化合物具有较好的体外抗真菌活性,值得深入研究。

English Abstract

庞磊, 赵晶, 倪廷峻弘, 臧成旭, 丁子超, 张大志, 姜远英. 新型含喹啉和噻吩结构的抗真菌化合物的设计与合成[J]. 药学实践与服务, 2017, 35(1): 17-21,86. doi: 10.3969/j.issn.1006-0111.2017.01.005
引用本文: 庞磊, 赵晶, 倪廷峻弘, 臧成旭, 丁子超, 张大志, 姜远英. 新型含喹啉和噻吩结构的抗真菌化合物的设计与合成[J]. 药学实践与服务, 2017, 35(1): 17-21,86. doi: 10.3969/j.issn.1006-0111.2017.01.005
PANG Lei, ZHAO Jing, NI Tingjunhong, ZANG Chengxu, DING Zichao, ZHANG Dazhi, JIANG Yuanying. Design and synthesis of novel antifungal compounds bearing quinoline and thiophene moieties[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 17-21,86. doi: 10.3969/j.issn.1006-0111.2017.01.005
Citation: PANG Lei, ZHAO Jing, NI Tingjunhong, ZANG Chengxu, DING Zichao, ZHANG Dazhi, JIANG Yuanying. Design and synthesis of novel antifungal compounds bearing quinoline and thiophene moieties[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 17-21,86. doi: 10.3969/j.issn.1006-0111.2017.01.005
参考文献 (19)

目录

    /

    返回文章
    返回