-
微透析(microdialysis,MD)在体取样新技术[1-4]逐渐成为药动学研究中一种日趋成熟和实用的方法。由于其探针开发的多样性和微型化,定位更加准确,并利用极微量(一般若干微升)的透析装置实现在体、实时、在线取样和监测。能在微创条件下满足定量、定性、定位、连续动态取样分析等要求,且不破坏生物体内环境对靶器官或组织内的内源性和外源性物质进行取样[5-6],在采用微透析技术进行体内采样测定前,必须先在体外进行微透析探针增量、减量两种方法的回收率测定,以摸索出适合体内测定时的条件,以确保将微透析样品测得的浓度准确地折算为采样部位的组织浓度。
头孢拉定(cephradine)又称先锋霉素Ⅵ、头孢菌素Ⅵ等,其结构式见图1,是临床常用的第一代头孢菌素。头孢拉定耐酸,可以口服、吸收好、血药浓度较高,特点是耐β内酰胺酶,对耐药性金黄色葡萄球菌及其他多种对广谱抗生素耐药的杆菌等有迅速而可靠的杀菌作用,主要以原形经尿排泄,尿中浓度较高。临床主要用于呼吸道、泌尿道、皮肤和软组织等的感染,如支气管炎、肺炎、肾盂肾炎、膀胱炎、耳鼻咽喉感染、肠炎及痢疾等,也常用于预防外科术后感染[7]。本研究使用微透析技术与液质(LC-MS/MS)这一灵敏度高、检测速度快、前处理方便的分析方法相结合,测定头孢拉定微透析体外回收率,并考察回收率的影响因素,为进一步研究头孢拉定在前列腺组织、血液双位点的药动学提供可靠依据。
-
G-6410型高效液相色谱质谱联用仪(美国安捷伦科技有限公司);DL-180A型超声波清洗器(上海之信仪器有限公司);AG285型电子分析天平(Mettler Toledo仪器上海有限公司);微透析系统包括四通道微量注射泵,双通道微量收集器(瑞典CMA公司);微透析同心圆探针(瑞典CMA公司,CMA 20Elite,膜长10 mm)。
-
乙腈为色谱纯(美国Tedia公司);头孢拉定对照品(中国食品药品检定研究院,纯度88.4%);林格溶液(辰欣药业股份有限公司);水为三蒸水(海军军医大学附属长海医院制剂室);其他试剂均为分析纯。
-
色谱柱:Agilent ZORBAX Extend-C18柱(2.1 mm × 100 mm,3.5 μm);流动相:乙腈-0.1%甲酸水溶液(20:80);流速:0.2 ml/min;进样量:1 μl;柱温:30 ℃。
-
ESI+离子源,阳离子MRM扫描模式,干燥气体温度:350 ℃,干燥气流速:8 L/min,雾化压力:15 psi,裂解电压120 V,碰撞能量6 eV,定量离子对为m/z=350.1→176.1。
-
在Product Ion 模式下对碎片离子进行定量分析,如图3所示,其中m/z=176.1的碎片离子响应值最高且稳定。因此,选择的监测离子为m/z=176.1的碎片离子。
-
精密称取头孢拉定对照品适量溶于50 ml的棕色容量瓶中,加林格溶液超声溶解使成浓度为50 μg/ml的对照品储备液。将此溶液放于4 ℃冰箱中避光保存。
-
吸取适量“2.1.5”项下对照品储备液,用林格溶液稀释成系列浓度为20 000、10 000、2 000、500、100、25、10 ng/ml的头孢拉定标准品溶液,按上述液质条件进样。以质量浓度为横坐标(X,ng/ml),峰面积为纵坐标(Y)进行线性回归,绘制标准曲线,以加权平均数得回归方程为:Y = 34.096 2X + 150.818 5,r = 0.999,表明头孢拉定在10~20 000 ng/ml范围内线性关系良好,定量下限为10 ng/ml。
-
在本实验条件下,分别取林格溶液空白样品、微透析溶液对照品进样,记录峰面积。结果表明林格溶液对头孢拉定的测定无干扰,如图4。
-
同法配置浓度为25、500、10 000 ng/ml的低、中、高头孢拉定对照品溶液,同一日平行操作6次,连续测定3 d,按《中国药典》(2015年版)生物样品定量分析方法计算日内精密度、准确度和日间精密度、准确度。结果显示,头孢拉定对照品连续进样6次,连续测定3 d,计算结果见表1,说明方法的精密度、准确度良好。
表 1 头孢拉定的日内和日间精密度、准确度考察结果(n=6)
标准浓度(ng/ml) 日内 日间 检测浓度(ng/ml) 精密度(%) 准确度(%) 检测浓度(ng/ml) 精密度(%) 准确度(%) 25 24.60±0.84 3.40 98.39 25.49±1.63 6.39 101.94 500 494.87±3.67 0.80 98.97 493.23±4.49 0.91 98.65 10 000 10 269.52±82.90 0.74 102.69 10 325.06±190.40 1.84 103.25 -
用林格溶液配制浓度为10 000、100 ng/ml的头孢拉定对照品溶液,分别在0、1、2、4、6、8、12 h进样测定,将结果与0 h进行比较。按《中国药典》(2015年版)生物样品定量分析方法计算所得的低、高浓度在室温25 ℃和4 ℃的稳定性,结果见表2,表明头孢拉定对照品溶液在12 h内稳定。
表 2 头孢拉定不同温度稳定性考察结果(
$\bar{ x} \pm { s}$ )标准浓度(ng/ml) 检测浓度(%) 室温(25 ℃) 低温(4 ℃) 低浓度(100) 101.64±4.24 103.73±6.30 高浓度(10 000) 104.29±2.51 103.79±1.73 -
减量法:将同心圆探针(膜截留相对分子质量2 000)浸入装有空白林格溶液的200 ml微透析体外回收率校正实验反应瓶中,磁力搅拌器转速200 r/min,水浴温度设置为(37.0±0.5)℃,用含有一定头孢拉定浓度(C灌流液)的林格溶液以一定流速进行灌注。平衡0.5 h后收集一个空白样品,每种灌流速度下收集 5 份样品,每份30 μl,且每个流速之间平衡20 min。在所建立的液质条件下测定透析液中药物含量(C透析液)。减量法公式:
RL(%) = (C灌流液 – C透析液)/C灌流液 × 100%
增量法:将同心圆探针(膜截留相对分子质量2 000)浸入含有一定头孢拉定浓度(C灌流液)的200 ml微透析体外回收率校正实验反应瓶中,磁力搅拌器转速200 r/min,水浴温度设置为(37.0±0.5)℃。微透析灌流液为一定灌流速度的空白林格溶液,平衡0.5 h后收集样品,每更换一次灌流速度后平衡20 min,每种灌流速度下收集5份样品,每份30 μl,共收集15份。在所建立的液质条件下测定透析液中药物含量(C透析液)。增量法公式:
RG(%) = C透析液/C灌流液 × 100%
-
分别采用增量法、减量法研究流速对探针回收率的影响。以500 ng/ml的头孢拉定药物溶液,灌流速度依次为1.0、2.0、3.0 μl/min测定,并按公式计算探针回收率,结果见图5。结果显示,灌流速度从1 μl/min增至3 μl/min时,随着流速增加,回收率降低。而且,头孢拉定浓度为25、10 000 ng/ml 的回收率试验结果与此相似。
-
分别用增、减量法研究流速为2 μl/min,头孢拉定溶液浓度分别为25、500、10 000 ng/ml时的回收率,结果见图6。结果显示,当以2 μl/min的流速进行灌流时,同一探针不同浓度采用单因素方差分析测得的回收率均无显著性差异(P>0.05)。表明探针回收率与药物浓度高低无关。
-
MD最初可追溯到20世纪60年代,当时不同类型的在体取样技术首次用于测定药物、介质、神经递质和代谢组织浓度[10-11],其原理是利用物质的扩散性和半透膜的选择透过性,探针头部半透膜位于组织内,且导管内液体与细胞内液体保持平衡,类似一个封闭的无孔毛细血管。这是一项为处在具有明显界限隔室里的游离型药物提供连续信息的微创技术。例如,成为测量细胞内和细胞外靶区浓度的标准工具。许多综述文章[12-17]已经证实MD是临床前和临床药学研发的有效工具。MD用于本研究的原理是基于血液-组织屏障的存在,屏障存在对血液浓度的依赖可能误导靶区浓度及药效学。在多年不断的研究中,人们发现血-前列腺屏障(BPB)的存在是影响前列腺炎药物治疗不可忽视的重要因素[18-20]。受采样和测定技术的限制,截止目前尚未明确BPB的具体部位和物质基础,故而很难研究其药物分布的特点和屏障作用的机制[21-23]。而MD有望解决前列腺组织特殊的部位和大小对技术上的高要求。有利于后期动物前列腺实验的开展。
微透析探针的回收率分为体内和体外,校正方法也有体内和体外之分。而体内校正应用反透析法即减量法的前提是探针的回收率与传递率近似相等,所以需要进行体外增、减量法的回收率试验。本实验结果可看出,体外回收率与流速成反比,与探针周围液体浓度无关,结果与多数报道相符[9, 24],由于待测部位的药物浓度是动态变化的,说明微透析技术可以用于体内药物浓度的测定。MD样品体积也与灌流速度成正比,在相同时间内流速越高体积越大,但是探针回收率也有所降低,这就要求分析方法检测限更低;而流速越低,透析液浓度越接近组织浓度,但为了收集足量样品体积用于检测,同时考虑时间分辨率问题须选择合适流速。此外,增、减量法所得到头孢拉定体外回收率结果相近,说明减量法即反透析法可以用于头孢拉定的体内回收率实验,并以此为体内药动学实验提供参考。
Microdialysis recovery of cefradine in vitro
-
摘要:
目的 测定头孢拉定微透析体外回收率及影响因素。 方法 采用微透析浓度差法(减量法、增量法)和液质联用技术(LC-MS/MS)测定头孢拉定的体外回收率,并考察流速、浓度对回收率的影响,以探讨微透析技术用于头孢拉定体内药动学研究的可行性。 结果 所建立的方法在要求范围内线性关系良好,方法灵敏可靠。增、减量法测得的回收率无显著性差异。相同条件下,探针体外回收率随流速增大而减小,不受探针周围药物浓度的影响。 结论 微透析技术可用于头孢拉定药动学研究,减量法可用于头孢拉定微透析体内回收率和药动学参数的测定。 Abstract:Objective To determine the in vitro recovery rate and influencing factors of cefradine microdialysis. Methods Two different methods (loss method, gain method) of microdialysis concentration and LC-MS/MS were used to determine the in vitro recovery rate of cefradine. The effect of flow rate and concentration of the perfusate on the recovery rate were investigated. To explore the feasibility of microdialysis technology for pharmacokinetic studies in cefradine. Results The LC-MS/MS analysis method was linear in the required range and the method was sensitive and reliable. There was no significant difference in the recovery rate measured by gain or loss method. Under the same conditions, the in vitro recovery of the probe decreased with increasing flow rate, independent of the drug concentration around the probe. Conclusion Microdialysis technique could be used to study the pharmacokinetics of cefradine, and loss method could be used to determine the in vivo recovery rate and pharmacokinetics of cefradine on microdialysis. -
Key words:
- microdialysis /
- cefradine /
- in vitro recovery
-
随着我国经济社会的发展和物质生活水平的提高,人民群众的医疗卫生健康需求日益增长,《“健康中国 2030”规划纲要》[1]与党的十九大精神均明确指出:“要为人民群众提供全方位全周期健康服务”。作为促进合理用药、提高医疗质量、保证患者用药安全的重要环节[2],药学服务迫切需要适应新形势新要求,加快高质量发展,由此,加强药师队伍建设、强化药学人员专业知识和临床实践能力培养,成为加快药学服务转型、加强合理用药管理的当务之急。药师培训效果评价是药师培训工作的重要组成部分,科学合理的药师培训效果评价能够在客观衡量培训质量与效益的同时,根据评价结果引导药师培训工作进行目标化调整,进而优化药师培训工作的实际效果。然而,目前我国以学分积累为主的药师培训效果评价多侧重于重在参与及基础知识,往往忽略对培训方案或培训成果在实际工作中的转化等内容进行评价,系统性匮乏且对完善培训工作的指导性较弱。因此,本研究旨在探索构建系统全面的且符合我国国情的药师培训效果评价体系,以期为药师培训效果评价工作的有效开展提供参考依据。
1. 初步构建评价指标体系
1.1 基于 Kirkpatrick 评估模型的评价指标体系框架设计
药师培训效果评价的目的在于为药师自我提升及培训工作不断优化提供依据,因而对药师培训活动进行过程及跟踪评价,并对相关评价主体所提供的反馈信息予以系统分析,从而确定培训价值和质量至关重要。1959 年, Kirkpatrick 提出四层评估模型[3] ,该模型分别在培训效果评价的针对性、全面性和有效性等方面得到了很好的实践验证,成为目前影响最大且应用最为广泛的培训效果评价工具。具体而言,该模型根据培训效果评价的深度和难度分为反应层(Reaction)、学习层(Learning)、行为层(Behavior)、结果层(Result)四 个递进层次,将质量考核与评估贯穿于整个培训过程,符合药师培训效果系统性评价要求。此外,Kirkpatrick 评估模型还可为培训组织者提供来自学员上级、同事等不同评估主体的反馈信息,满足药师培训活动持续改进需求。基于 Kirkpatrick 评估模型与药师培训评价的内在契合性,本研究以 Kirkpatrick 评估模型为基础,初步确定了药师培训效果评价指标体系基本框架,包括反应评估、学习评估、行为评估和结果评估。
1.2 指标设置
在确定评价指标体系框架后,研究遵循全面性、针对性及可操作性原则,结合我国各类药师培训实践特点及专家访谈意见,初步构建了药师培训效果评价的具体指标,见表1。
表 1 我国药师培训效果评价指标体系初始框架一级指标 二级指标 三级指标 反应评估 培训方案 培训内容与培训目标的契合度、培训内容实用性、培训内容新颖性、课程体系完整合理 师资队伍 专业水平、语言表达、教学方法 培训条件 培训组织与管理、培训场所与设施、培训资源充足性 学习评估 理论知识 沟通基础知识、药事管理相关法律法规知识、药学专业知识、药物治疗学知识、临床医学知识、药物经济学知识 实践技能 沟通协调能力、处方调剂能力、药学咨询能力、药物治疗评价能力、药物个体化治疗水平 行为评估 工作能力变化 药品管理水平、处方审核和调配水平、药物信息咨询及用药指导水平、药物治疗管理水平 职业态度变化 对待患者态度、工作责任感、工作主动性 结果评估 个人收益 自我满意度、个人职业发展 组织收益 上级/部门满意度、患者满意度 1.2.1 反应评估
反应评估主要考察学员对培训项目的满意度,其反馈信息可推动后续培训项目的修正与完善。通过文献研究发现,培训方案针对性不足、师资队伍水平参差不齐及培训条件不同地区间差异较大均在一定程度上影响药师培训同质性,导致现有药师培训质量良莠不齐。为保证本阶段评价结果的有效性与应用性,研究根据上述药师培训效果影响因素梳理结果拟定了反应评估的主要评估对象,即“培训方案” “师资队伍” “培训条件”。三级指标的设计主要依据培训管理与教育教学相关理论展开,通过详细测量药师对培训方案设置、师资水平和软硬件配备情况的主观感受,从而评定培训基地开展药师培训的客观条件及其培训水平。
1.2.2 学习评估
学习评估主要考核学员对培训内容的掌握程度。为顺应我国药学服务转型需求与政策发展导向,切实促进药师药学服务能力高质量发展,研究分别围绕“理论知识”与“实践技能”两方面开展评价指标筛选。其中,参考中国药师协会于 2017 年 6 月发布的《药师药学服务胜任力评价标准》[4],“理论知识”下主要纳入包括“药物治疗学知识”在内的专业知识指标,与保障药学服务实践顺利开展的人文知识指标“沟通基础知识”;同样,“实践技能”下的三级指标设置除基于药师基本职责纳入“处方调剂能力”等专业必备技能外,还考虑纳入人文胜任力指标,即“沟通协调能力”。
1.2.3 行为评估
行为评估主要考察学员在接受培训后实际工作行为的改进程度。依据培训迁移理论[5],学员对培训内容的转化既包括将所学知识、技能直接应用于实践的直接迁移,也包括将培训过程中潜移默化所学内容(通常与培训主题不直接相关)应用于实践的间接迁移。由此,研究将行为评估细分为“工作能力变化”与“职业态度变化”。结合各类药师药学服务能力建设要求[6-8],三级指标分别从临床合理用药知识、技能及内驱力等角度予以拟定。
1.2.4 结果评估
结果评估主要衡量培训创造的各类效益与成果。研究将该阶段评估重点归纳为“个人绩效”与“组织绩效”两方面,并尝试通过在二级指标下设置“自我满意度” “上级/部门满意度” “患者满意度”等与培训项目有较高相关性的结果型指标,进而实现药师自评与上级、同事、患者评价的结合,在一定程度上确保评价信息的真实性和可靠性。
2. 应用 Delphi 法修正评价指标体系
2.1 选择咨询专家
Delphi 法一般要求遴选的专家为研究对象领域的“知情人士”[9],即在相关领域具有权威性与代表性。本研究的专家遴选标准为:①具有中级及以上专业技术职称;②具有本科及以上学历;③具有药学专业领域10年以上工作经验;④具有积极完成本调研的主观意愿。研究最终选取 16 名符合要求的受访专家,包括全国范围内的医院药学部负责人 2 名,高校教授、副教授 10 名,政府药学服务相关工作负责人 2 名,药师协会负责人 1 名,医药企业负责人 1 名。研究方向覆盖药学教育、药事管理等专业领域,深刻了解各类药师岗位特点、需求以及各类药师培训内容等,具备良好的学科与区域代表性,专家基本情况具体见表2。本研究中,专家权威系数为 0.80,表明参与咨询的专家权威程度较高,咨询结果可靠。
表 2 咨询专家基本信息项目 年龄/简历 人数 百分比(%) 年龄(岁) 30~39 3 18.75 40~49 8 50.00 50~59 5 31.25 学历 本科 3 18.75 硕士 3 18.75 博士及以上 10 62.50 职称 中级 5 31.25 副高级 6 37.50 正高级 5 31.25 从事专业年限(年) 10~20 12 75.00 20~30 1 6.25 >30 3 18.75 2.2 专家问卷调查
根据初始指标体系编制第 1 轮专家咨询问卷,问卷中指标重要性程度依据 Likert 五分量表法分别分为非常重要(5 分)、比较重要(4 分)、重要(3 分)、不太重要(2 分)、不重要(1 分)[10]。专家根据其对指标的熟悉程度及判断依据对指标的重要性程度进行赋值,如果专家认为某个指标内涵描述不准确,可在“修改意见”一栏内提出建议;如果认为有尚未考虑到的指标,可在“新增指标建议”一栏中填写建议增加的指标及其内涵[11]。通过电子邮件的方式发放与回收专家咨询问卷,第 1 轮专家咨询结束后,专家评分统计结果见表3。以指标重要性专家赋值均值≥3.5,满分比≥60%,变异系数≤20% 作为筛选标准,结合数理统计结果与专家意见,指标增删及其内涵调整情况如下:①删除1个三级指标:满分率未达到标准的“药物经济学知识”指标(52.94%)。②新增1个三级指标:反映药师在接受培训后,能够运用各类方法(如信息化管理平台等)创新性改善药学服务的“药学服务创新能力”指标。③更名1个三级指标:将“培训资源充足性”指标更名为“教学资源”,并在指标内涵中增加教学资源针对性的表述。
表 3 第 1 轮专家评分情况能力指标 标准差 均值 变异系数 满分率(%) A 反应评估 0.60 4.63 0.13 88.24 A1 培训方案 0.50 4.56 0.11 94.12 A1.1 培训内容与培训目标的契合度 0.50 4.56 0.11 94.12 A1.2 培训内容实用性 0.33 4.88 0.07 94.12 A1.3 培训内容新颖性 0.66 4.25 0.16 82.35 A1.4 课程体系完整合理 0.70 4.38 0.16 82.35 A2 师资队伍 0.39 4.81 0.08 94.12 A2.1 专业水平 0.43 4.75 0.09 94.12 A2.2 语言表达 0.70 4.44 0.16 82.35 A2.3 教学方法 0.61 4.44 0.14 88.24 A3 培训条件 0.75 4.06 0.18 70.59 A3.1 培训组织与管理 0.73 4.19 0.17 76.47 A3.2 培训场所与设施 0.75 3.94 0.19 64.71 A3.3 培训资源充足性 0.66 4.06 0.16 76.47 B 学习评估 0.61 4.56 0.13 88.24 B1 理论知识 0.68 4.31 0.16 82.35 B1.1 沟通基础知识 0.48 4.38 0.11 94.12 B1.2 药事管理相关法律法规知识 0.48 4.63 0.10 94.12 B1.3 药学专业知识 0.56 4.25 0.13 88.24 B1.4 药物治疗学知识 0.46 4.69 0.10 94.12 B1.5 临床医学知识 0.56 4.25 0.13 88.24 B1.6 药物经济学知识 0.60 3.63 0.17 52.94 B2 实践技能 0.53 4.81 0.11 88.24 B2.1 沟通协调能力 0.43 4.75 0.09 94.12 B2.2 处方调剂能力 0.61 4.56 0.13 88.24 B2.3 药学咨询能力 0.33 4.88 0.07 94.12 B2.4 药物治疗评价能力 0.50 4.56 0.11 94.12 B2.5 药物个体化治疗水平 0.61 4.56 0.13 88.24 C 行为评估 0.39 4.81 0.08 94.12 C1 工作能力变化 0.46 4.69 0.10 94.12 C1.1 药品管理水平 0.61 4.56 0.13 88.24 C1.2 处方审核和调配水平 0.39 4.81 0.08 94.12 C1.3 药物信息咨询及用药指导水平 0.50 4.56 0.11 94.12 C1.4 药物治疗管理水平 0.50 4.50 0.11 94.12 C2 职业态度变化 0.46 4.69 0.10 94.12 C2.1 对待患者态度 0.46 4.69 0.10 94.12 C2.2 工作责任感 0.39 4.81 0.08 94.12 C2.3 工作主动性 0.61 4.50 0.14 88.24 D 结果评估 0.71 4.50 0.16 82.35 D1 个人收益 0.43 4.75 0.09 94.12 D1.1 自我满意度 0.50 4.56 0.11 94.12 D1.2 个人职业发展 0.48 4.63 0.10 94.12 D2 组织收益 0.58 4.31 0.14 88.24 D2.1 上级/部门满意度 0.50 4.50 0.11 94.12 D2.2 患者满意度 0.48 4.63 0.10 94.12 在修正指标的基础上编制问卷,并进行第 2 轮专家咨询。在这一轮中,专家对各级指标未提出修正建议,且对各项指标重要性评分极差小于 2 分,研究认为拟定的药师培训效果评价指标体系经修改已达成共识,专家意见趋于统一。采用同样的指标筛选标准和数据处理方法进行统计发现,各项指标均满足筛选条件。
3. 研究结果
本研究最终确立的药师培养效果评价指标体系包含4 个一级指标,9 个二级指标和 32 个三级指标,具体指标及指标内涵见表4。
表 4 我国药师培训效果评价指标体系指标 指标内涵 A 反应评估 考察培训活动相关项目的质量 A1 培训方案 方案设置合理且有针对性,能够满足药师队伍梯次建设需要 A1.1 培训内容与目标的契合度 内容科学严谨,知识点覆盖全面,满足培训目标要求 A1.2 培训内容实用性 内容紧贴各类药师岗位需求和职业发展 A1.3 培训内容新颖性 内容涵盖国内外药学各学科进展和动态 A1.4 课程体系完整合理 课程结构合理,理论课程与实践课程、专业知识与人文知识比例适当 A2 师资队伍 师资队伍具有完备的专业知识结构及丰富的教学实践能力 A2.1 专业水平 具备丰富的专业理论知识和用药实践经验 A2.2 语言表达 语言表达风趣、简练,重点突出,课堂气氛活跃 A2.3 教学方法 教学方法适宜,能够在提高教学效率的同时,促进学员自主学习 A3 培训条件 培训机构软硬件条件齐全,可满足药师理论与实践教学要求 A3.1 培训组织与管理 培训相关管理制度完善,管理人员结构合理、职责明确 A3.2 培训场所与设施 机构具备基础教学条件,如符合规定的教学场所和完备的仪器设备等 A3.3 教学资源 提供丰富且具针对性的数字化学习资源,实训所接触病种应具多样性及代表性 B 学习评估 考核药师对培训内容的掌握程度 B1 理论知识 熟练掌握开展药学服务必需的基本知识及相关专业知识 B1.1 沟通基础知识 熟悉心理学、社会学等知识,能有针对性地进行疏导等服务 B1.2 药事管理法律法规知识 熟悉《药品管理法》等相关法律法规 B1.3 药学专业知识 掌握现代与传统药物的药理学、药物化学等知识 B1.4 药物治疗学知识 掌握临床药物治疗学知识 B1.5 临床医学知识 掌握医学相关基础知识 B2 实践技能 熟练掌握开展药学服务必需的基本技能及相关专业技能 B2.1 沟通协调能力 善于交流,能促进相互理解且获得支持与配合 B2.2 处方调剂能力 认真审核处方,准确调配药品,正确书写药袋或粘贴标签;向患者交付药品时进行用药交待与指导 B2.3 药学咨询能力 解答关于药品的适应证、用法用量、不良反应等问题 B2.4 药物治疗评价能力 评价用药安全性、有效性、经济性,制定适当的治疗方案 B2.5 药物个体化治疗水平 对治疗指数低、毒副作用强的药物,能够基于TDM制定、调整个体化给药方案,避免用药的盲目性 C 行为评估 考察药师在接受培训后实际工作行为的改进程度 C1 工作能力变化 药师在接受培训后运用所学知识与技能提高其服务水平 C1.1 药品管理水平 指导并监督药品采购、验收、储存等环节的质量管理工作 C1.2 处方审核和调配水平 审核处方、用药医嘱的适宜性,按处方要求进行调配与核查 C1.3 药物咨询及用药指导水平 为医护人员提供合理用药信息,对患者开展正确用药指导与知识宣教 C1.4 药物治疗管理水平 用药过程中统筹规划、适时跟进、协调沟通用药方案、不良反应、患者健康教育等,优化患者治疗效果 C1.5 药学服务创新能力 能够运用各类方法(如信息化管理平台等)创新性改善药学服务 C2 职业态度变化 药师在接受培训后改进其对实际工作的认知与行为倾向 C2.1 对待患者态度 热心、耐心、平等对待患者,尊重患者隐私,维护患者合法权益 C2.2 工作责任感 有强烈职业使命感,以维护公众生命安全及健康利益为最高行为准则 C2.3 工作主动性 根据岗位职责和工作要求积极提供服务,加强与医护患之间的联系 D 结果评估 考察接受培训后药师个人及其组织绩效的提高程度 D1 个人收益 考察药师综合素质提升情况 D1.1 自我满意度 对理论知识、技能、职业道德、工作效率等方面提升的满意程度 D1.2 个人职业发展 对促进自身发展、提升执业技能和竞争力的满意程度 D2 组织收益 考察因药师药学服务能力提高所带来的组织绩效提升情况 D2.1 上级/部门满意度 对药师工作效率、业务技能、医护患沟通能力等提升的满意程度 D2.2 患者满意度 对药师服务态度、服务能力、服务效率等方面的满意程度 经统计,两轮专家咨询问卷回收率均为 100%,在一定程度上反映了咨询专家的积极程度较高。第 2 轮专家咨询总体肯德尔协调系数值为 0.410,经检验差异具有显著性(P<0.001),说明专家对调整后评价指标的协调程度高;所有指标的变异系数最小为 0.07,最大为 0.19,均在可接受范围,即认为专家意见集中程度符合要求,咨询结果可信度高。
4. 药师培训效果评价指标体系的实际应用
研究构建的药师培训效果评价指标体系确定了我国药师培训效果评价所需考量的详细内容,实际应用时应尽可能兼顾行政成本(即人力、物力、时间等资源)、评价信息量及可操作性等要素。具体而言,为在反应层评价环节获取高附加值信息,建议培训组织根据药师在填写调查问卷的主观心态和理解程度进行问卷设计,从而激发其填答兴趣,增强问卷调查的可信度;学习层评价多采用前后评估法以直观衡量教学成果,对药师能力的前期考核建议由药师所在单位对其进行自主评估,既节约了培训组织者试题设计等行政成本,还能充分发挥单位深度掌握学员基本情况的优势,提高前期评估结果的准确性;对行为层及结果层开展的跟踪评价应尽量避免单纯采用考核形式,建议辅以行为观察、文件查阅等更为“隐蔽”的形式,从而强化对药师实际药学服务能力考察的客观真实性。此外,培训效果评价的最终目的在于推动培训成果顺利实现转化,因而有必要根据培训项目的运行流程,与相关主体进行及时反馈与沟通,最大限度地发挥培训效果评估信息的作用。例如,在培训实施过程中定期将反应层或学习层评估结果反馈给培训组织者或培训教师,以便根据药师实际需求及时调整培训方案和教学工作,进而提高培训项目的整体运行质量。
5. 结语
科学的评价指标体系是衡量和评判药师培训效果的必备工具,本研究以Kirkpatrick 评估模型为基础,分别从反应层、学习层、行为层和结果层四个维度进行指标的筛选和修正,构建了多维度全流程的药师培训效果评价体系,对药师培训效果评价方案设计具有一定指导意义。此外,本指标体系还可为培训组织者提供药师培训工作的完善方向与侧重点,从而推动提高资源配置效率,加快药学服务能力建设进程。但由于受到时间、人力等方面的影响,本研究构建的指标体系完全来源于理论研究和专家咨询,有待通过实证研究予以进一步验证与优化,从而在药师培训评价实践中更好地发挥作用。
-
表 1 头孢拉定的日内和日间精密度、准确度考察结果(n=6)
标准浓度(ng/ml) 日内 日间 检测浓度(ng/ml) 精密度(%) 准确度(%) 检测浓度(ng/ml) 精密度(%) 准确度(%) 25 24.60±0.84 3.40 98.39 25.49±1.63 6.39 101.94 500 494.87±3.67 0.80 98.97 493.23±4.49 0.91 98.65 10 000 10 269.52±82.90 0.74 102.69 10 325.06±190.40 1.84 103.25 表 2 头孢拉定不同温度稳定性考察结果(
$\bar{ x} \pm { s}$ )标准浓度(ng/ml) 检测浓度(%) 室温(25 ℃) 低温(4 ℃) 低浓度(100) 101.64±4.24 103.73±6.30 高浓度(10 000) 104.29±2.51 103.79±1.73 -
[1] NANDI P, LUNTE S M. Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review[J]. Anal Chim Acta,2009,651(1):1-14. doi: 10.1016/j.aca.2009.07.064 [2] HURTADO F K, WEBER B, DERENDORF H, et al. Population pharmacokinetic modeling of the unbound levofloxacin concentrations in rat plasma and prostate tissue measured by microdialysis[J]. Antimicrob Agents Chemother,2014,58(2):678-686. doi: 10.1128/AAC.01884-13 [3] K HURTADO F, LAUREANO J V, DE A LOCK G, et al. Enhanced penetration of moxifloxacin into rat prostate tissue evidenced by microdialysis[J]. Int J Antimicrob Agents,2014,44(4):327-333. doi: 10.1016/j.ijantimicag.2014.06.011 [4] 李奕, 周佳, 王卓, 等. 用微透析法研究肺炎大鼠灌胃左氧氟沙星的肺部药动学[J]. 药学服务与研究, 2013, 13(5):365-368. [5] MARCHAND S, CHAUZY A, DAHYOT-FIZELIER C, et al. Microdialysis as a way to measure antibiotics concentration in tissues[J]. Pharmacol Res,2016,111:201-207. doi: 10.1016/j.phrs.2016.06.001 [6] CHAURASIA C S. In vivo microdialysis sampling: theory and applications[J]. Biomed Chromatogr,1999,13(5):317-332. doi: 10.1002/(SICI)1099-0801(199908)13:5<317::AID-BMC891>3.0.CO;2-I [7] 田红玉, 聂飞, 周凝. 头孢拉定结晶工艺研究[J]. 煤炭与化工, 2019, 42(4):141-143. [8] 唐晓萌. 基于两步释放的术连微丸口服结肠靶向胶囊的研制及体内外评价[D]. 上海: 海军军医大学, 2019. [9] 王丹. 微透析液相色谱联用的构建及在经皮药动学研究的应用[D]. 上海: 第二军医大学, 2009. [10] UNGERSTEDT U, PYCOCK C. Functional correlates of dopamine neurotransmission[J]. Bull Schweiz Akad Med Wiss,1974,30(1-3):44-55. [11] LÖNNROTH P, JANSSON P A, SMITH U. A microdialysis method allowing characterization of intercellular water space in humans[J]. Am J Physiol,1987,253(2 Pt 1):E228-E231. [12] MÜLLER M. Science, medicine, and the future: microdialysis[J]. BMJ,2002,324(7337):588-591. doi: 10.1136/bmj.324.7337.588 [13] MÜLLER M. Monitoring tissue drug levels by clinical microdialysis[J]. Altern Lab Anim,2009,37(Suppl 1):57-59. [14] MULLER M. Microdialysis in clinical drug delivery studies[J]. Adv Drug Deliv Rev,2000,45(2-3):255-269. doi: 10.1016/S0169-409X(00)00113-7 [15] STAHL M, BOUW R, JACKSON A, et al. Human microdialysis[J]. Curr Pharm Biotechnol,2002,3(2):165-178. doi: 10.2174/1389201023378373 [16] SCHMIDT S, BANKS R, KUMAR V, et al. Clinical microdialysis in skin and soft tissues: an update[J]. J Clin Pharmacol,2008,48(3):351-364. doi: 10.1177/0091270007312152 [17] HÖCHT C, OPEZZO J A, BRAMUGLIA G F, et al. Application of microdialysis in clinical pharmacology[J]. Curr Clin Pharmacol,2006,1(2):163-183. doi: 10.2174/157488406776872587 [18] FULMER B R, TURNER T T. A blood-prostate barrier restricts cell and molecular movement across the rat ventral prostate epithelium[J]. J Urol,2000,163(5):1591-1594. doi: 10.1016/S0022-5347(05)67685-9 [19] LIU Y L, YI S H, ZHANG J L, et al. Effect of microbubble-enhanced ultrasound on prostate permeability: a potential therapeutic method for prostate disease[J]. Urology,2013,81(4):921.e1-921.e7. [20] SHANG Y, CUI D, YI S. Opening tight junctions may be key to opening the blood-prostate barrier[J]. Med Sci Monit,2014,20:2504-2507. doi: 10.12659/MSM.890902 [21] PERLETTI G, WAGENLEHNER F M, NABER K G, et al. Enhanced distribution of fourth-generation fluoroquinolones in prostatic tissue[J]. Int J Antimicrob Agents,2009,33(3):206-210. doi: 10.1016/j.ijantimicag.2008.09.009 [22] LEIBOVITZ A, BAUMOEHL Y, SEGAL R. Increased incidence of pathological and clinical prostate cancer with age: age related alterations of local immune surveillance[J]. J Urol,2004,172(2):435-437. doi: 10.1097/01.ju.0000131908.19114.d3 [23] LIU Y L, LIU Z, LI T, et al. Ultrasonic sonoporation can enhance the prostate permeability[J]. Med Hypotheses,2010,74(3):449-451. doi: 10.1016/j.mehy.2009.09.052 [24] 唐红艳. 基于微透析技术研究雪上一枝蒿不同制剂经皮药动学[D]. 贵阳: 贵阳中医学院, 2017. -