留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

《药学实践与服务》杂志目前不收取审稿费、版面费、加急费等费用,如收到邮件声称是编辑部X编辑,要求加作者微信的,请谨防财产损失!编辑部用于作者校对时绑定微信的邮件通过yxsjzzs@163.com发送,标题是《药学实践与服务》XML数字出版服务微信绑定,请区分开。

茚满霉素类天然产物的研究进展

朱玉琴 吴杰群 孙鹏

黄琴, 高子昭, 尼样卓玛, 索南格勒, 王荣. 高原低氧环境下硝苯地平控释片对高血压患者降压作用的临床研究[J]. 药学实践与服务, 2022, 40(5): 395-398. doi: 10.12206/j.issn.2097-2024.202205112
引用本文: 朱玉琴, 吴杰群, 孙鹏. 茚满霉素类天然产物的研究进展[J]. 药学实践与服务, 2020, 38(3): 211-215, 226. doi: 10.12206/j.issn.1006-0111.201910034
HUANG Qin, GAO Zizhao, NIYANG Zhuoma, SUONAN Gele, WANG Rong. Clinical trial of nifedipine controlled-release tablets on reducing blood pressure in the treatment of patients with hypertension at high altitude[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(5): 395-398. doi: 10.12206/j.issn.2097-2024.202205112
Citation: ZHU Yuqin, WU Jiequn, SUN Peng. Research progress on indanomycin natural products[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(3): 211-215, 226. doi: 10.12206/j.issn.1006-0111.201910034

茚满霉素类天然产物的研究进展

doi: 10.12206/j.issn.1006-0111.201910034
基金项目: 国家自然科学基金(81622044,81573342,41876184);上海市科委基金(18ZR1449600)
详细信息
    作者简介:

    朱玉琴,硕士研究生,研究方向:分子生物学,Email:zyq15700086152@163.com

  • 中图分类号: R914

Research progress on indanomycin natural products

  • 摘要: 茚满霉素类天然产物是一类具有反式四氢茚满环(indan)结构的微生物次级代谢产物,该类化合物普遍具有良好的抗菌、杀虫以及抗肿瘤等生物活性,因而引起了药物化学家和生物学家的广泛兴趣。对1979年至今有关茚满霉素类化合物的天然发现、生物活性、化学合成以及生物合成等方面的研究进展进行综述,为该类抗生素的基础和应用研究提供科学参考。
  • 高原是指海拔高于2 500 m能够引起机体产生明显生物学效应的地区[1]。高原低氧环境会影响机体的生理功能与药物疗效的发挥[2]。高原地区高血压患病率显著高于平原地区,高血压是高原地区最常见的慢性疾病和心血管疾病的严重危险因素。临床上最常使用钙通道阻滞剂类降压药(CCB)[3],硝苯地平是治疗高血压的一线用药,通过阻断血管平滑肌细胞上的钙通道从而扩张血管降低血压,同时阻断心肌细胞L型钙通道从而减慢心率[4]。本课题组前期研究表明,急进高原后大鼠体内硝苯地平的药动学参数会发生显著变化[5]。由于高原低氧环境导致药物的药动学参数改变,体内血药浓度可能达不到有效治疗浓度,从而影响硝苯地平降压效果,但目前有关硝苯地平对高原高血压人群的疗效研究尚未见报道。本研究首次报道高原低氧环境下硝苯地平控释片对高血压患者降压作用的临床疗效及安全性评价,从而为高原高血压人群提供有效治疗方案,为临床合理用药提供参考。

    研究对象为2020年2月至2021年2月于中国人民解放军联勤保障部队第九四〇医院及玉树八一医院诊治的共84例高血压患者。本研究经第九四〇医院伦理委员会批准,审批编号为2019KYLL068。

    1.1.1   诊断与入选标准

    ①符合《中国高血压防治指南》中关于高血压的诊断标准[6],即非同日3次所测量的诊室血压:收缩压(SBP)≥140 mmHg和(或)舒张压(DBP)≥90 mmHg的患者;②高原高血压患者为久居高原1年及以上者,平原高血压患者为久居平原1年及以上者,两组患者近1个月内未服用降压药物;③入院后连续每日晨起服用硝苯地平控释片30 mg,连续6 d达到稳态血药浓度者;④年龄40~85岁。

    1.1.2   排除标准

    ①继发性高血压或临床诊断为病危者;②伴发有严重心脑血管疾病者。③肝功能异常者,丙氨酸氨基转移酶(ALT)或天冬氨酸氨基转移酶(AST)超过上限1.5倍者;④肾功能异常者或存在影响肾功能的急性因素者。

    硝苯地平控释片,规格:30 mg/片,批号:IX20200382,批准文号:国药准字J20180025,德国Bayer AG公司生产。

    将42例第九四〇医院高血压住院患者(海拔1 500 m)设为平原高血压组,42例八一医院高血压住院患者(海拔3 800 m)设为高原高血压组。两组患者均给予硝苯地平控释片每日晨起口服30 mg,连续6 d。

    根据我国总结和规定的降压药临床研究指导原则:将血压作为药效评价的主要指标,将记录的平原与高原组血压值,按照疗效标准等级:显效、有效、无效进行评价。考察相同剂量下,高原低氧环境对硝苯地平降压疗效的影响。监测平原高血压组和高原高血压组患者按照每日晨起口服30 mg硝苯地平控释片连续6 d的血压值,包括每天清晨、服药前及临睡前3个时段的SBP和DBP。具体操作为:在患者平躺情况下,对每个时间段的每次血压均测定3次,计算出平均值。疗效判定按文献[7-8]的方法对3个时间段的血压进行评价,分为显效、有效和无效。显效:SBP下降幅度≥10 mmHg并降至正常或SBP未达正常但下降幅度≥20 mmHg;有效:SBP下降1~10 mmHg并降至正常或SBP未降至正常但下降10~19 mmHg;无效:未达到上述标准。对总有效率(总有效率=显效率+有效率)进行统计学比较,以判定疗效。

    此外,临床研究显示,较快的心率会显著增加高血压患者心血管事件和病死率[9-11]。依据专家建议,高血压患者应首先控制血压达标,在降压治疗的同时注重心率管理[12]。硝苯地平控释片具有反射性刺激交感神经激活的作用,可能导致心率加快引起心悸等不良反应。根据国内外指南和专家共识,在测定血压时一并测得心率,详细记录清晨、服药前、临睡前的心率。

    用SPSS Statistics 21进行统计分析。计量资料用$ \bar x \pm s $表示,组间比较用独立样本t检验,组内比较用卡方检验;计数资料用率表示,比较用卡方检验。

    调查内容包括一般人口学资料、身高、体重、BMI、ALT、AST、Cr等。平原高血压组及高原高血压组的AST、ALT、Cr值均符合纳入排除标准,患者伴发疾病及合并用药较少。两组患者的一般资料比较,差异均无统计学意义(P>0.05),组间具有可比性,见表1

    表  1  平原高血压组和高原高血压组患者的一般资料比较($ \bar x \pm s $n=42)
    项目平原高血压组高原高血压组
    性别(男/女)30/1222/20
    年龄 61.24±8.02 60.19±9.28
    身高(l/cm)168.79±9.09 168.31±6.45
    体重(m/kg) 69.30±10.64 67.29±7.36
    BMI (kg/m2 24.23±2.45 23.80±2.54
    AST(U/L) 21.31±8.87 25.14±9.77
    ALT(U/L) 27.14±16.90 28.38±15.37
    Cr(μmol/L) 74.93±17.33 76.17±19.79
    下载: 导出CSV 
    | 显示表格

    依据临床血压监测指导原则,测定了3个不同时间段的血压值,分别为清晨、用药前及临睡前的血压。治疗前,高原高血压组的清晨DBP、服药前及临睡前的SBP和DBP均显著高于平原高血压组,且高原组舒张压升高更为显著。连续用药6 d后,平原高血压组的清晨、服药前及临睡前SBP均显著低于治疗前(P<0.01)。高原高血压组治疗前后的各时间段SBP和DBP均显著高于平原高血压组,差异均有统计学意义(P<0.05),但高原组治疗后与治疗前相比无显著性差异,且血压未降至正常,可见高原高血压组服用硝苯地平在6 d内的降血压疗效比平原高血压组差,详见表2

    表  2  平原高血压组和高原高血压组不同时段血压值比较(mmHg,$ \bar x \pm s $n=42)
    组别检测时间SBPDBP
    清晨服药前临睡前清晨服药前临睡前
    平原高血压组治疗前151.14±15.70146.90±10.45148.93±12.39 89.43±13.1187.48±10.3089.62±11.60
    治疗后138.86±14.66##137.93±14.44#137.95±17.82#86.90±12.5286.05±14.0685.05±12.70
    高原高血压组治疗前154.55±12.29153.38±11.66**154.60±11.98*104.67±17.18***106.86±15.09***106.64±14.18***
    治疗后148.93±19.76*148.55±19.28**149.10±20.00**100.07±16.11***102.19±16.60***101.86±15.89***
    *P<0.05, **P<0.01, ***P<0.001,与平原高血压组比较;#P<0.05,##P<0.01,与治疗前比较。
    下载: 导出CSV 
    | 显示表格

    采用配对样本t检验判断硝苯地平治疗前后对平原高血压组和高原高血压组患者血压的影响,表3结果显示,平原高血压组治疗前后的清晨、服药前及临睡前SBP、临睡前DBP有统计学差异,高原高血压组治疗前后各时间段的SBP和DBP无统计学差异。

    表  3  平原高血压组和高原高血压组患者治疗前后血压下降值比较(mmHg,$ \bar x \pm s $n=42)
    组别SBP下降值DBP下降值
    清晨服药前临睡前清晨服药前临睡前
    平原高血压组12.29±17.10***8.98±15.40**10.98±17.70***2.52±10.561.43±12.364.57±10.43**
    高原高血压组5.62±16.724.83±19.175.50±19.584.59±16.944.67±17.914.78±17.59
    **P<0.01, ***P<0.001,与治疗前清晨、服药前、临睡前比较。
    下载: 导出CSV 
    | 显示表格

    专家建议将研究结束时给药间隔末(谷值时)血压与基线血压的差值作为主要疗效指标[8],本研究中选用服药前时间段的治疗前后血压之差进行疗效评价。高原高血压组和平原高血压组的总有效率分别为47.62%(20例/42例)和76.19%(32例/42例),高原高血压组硝苯地平控释片降压总有效率显著低于平原高血压组(P<0.05),见表4

    表  4  平原高血压组和高原高血压组患者的临床疗效比较[例(%),n=42]
    组别显效有效无效总有效率
    平原高血压组24(57.14)8(19.05)10(23.81)32(76.19)
    高原高血压组13(30.95)7(16.67)22(52.38) 20(47.62)*
    *P<0.05,与平原高血压组比较。
    下载: 导出CSV 
    | 显示表格

    两组患者均按照医嘱连续服药,获得81例患者不同时段心率数据。其中,平原高血压组41例,高原高血压组40例。高原高血压组各时间段的心率均显著高于平原高血压组,证实高原低氧环境会导致心率显著上升。连续用药6 d后,平原高血压组的清晨及服药前心率显著低于治疗前(P<0.05),高原高血压组心率有所下降,但无显著性差异(P>0.05),见表5。提示应在降压治疗的同时关注心率管理,以预防心血管事件的发生。

    表  5  平原高血压组与高原组患者心率指标比较($ \bar x \pm s $
    组别治疗前治疗后
    清晨服药前临睡前清晨服药前临睡前
    平原高血压组109.51±17.46110.37±17.90109.85±17.62100.46±21.13#101.46±21.88#101.39±21.42
    高原高血压组119.03±13.96**119.70±14.64*119.43±14.05**113.65±20.22**113.18±19.56*114.55±19.55**
    *P<0.05**P<0.01,与平原高血压组比较;#P<0.05,与治疗前比较。
    下载: 导出CSV 
    | 显示表格

    在试验过程中,平原高血压组5例患者发生心动过速、心悸的症状,高原高血压组6例患者发生心动过速、心悸的症状。两组患者的药物不良反应发生率分别为11.90%和14.29%,差异无统计学意义(P>0.05)。

    本研究结果表明,高原高血压组的血压和心率值均显著高于平原高血压组,且高原高血压组血压控制不良、心率管理不佳,高原高血压患者服用与平原高血压患者同剂量的硝苯地平控释片未能有效地控制短期内血压。高原地区硝苯地平用药剂量应高于平原剂量,因此有必要建议《中国高血压防治指南》可增加一项高原地区高血压人群用药剂量。以增加药物在机体内的血药浓度,从而长期有效控制血压,与此同时需做好高血压患者服药前后血压的监测及患者安全用药教育,减少药物不良反应的发生,从而提高高原地区用药的合理性、安全性及有效性。

    高原合理用药展望,目前,高原地区的合理用药指导有待提高,原因有以下几点:①地域偏远、文化差异及经济欠发达导致高原地区医护人员的合理用药意识存在局限性。此外,高原地区高血压的患病率高于全国平均水平,但患者的知晓率、治疗率和控制率明显偏低[13]。②高血压是心血管系统中最常见的慢性疾病,可诱发许多并发症,高血压严重危害高原地区人群的生命健康,降低血压可随之降低心血管疾病并发率,改善预后[14-15],但高原地区患者服药的依从性差,不能长期遵医嘱服药,导致血压控制不佳,增加心血管疾病患病风险。③高原低氧环境会改变药物药动学参数从而影响药物疗效,但高原地区人体的药动学研究少有报道。从事高原合理用药研究的相关人员较少,高原人群的特殊用药至今未列入研究的议事日程。高原低氧环境导致药动学改变从而导致药效的差异是个体化合理用药中必须考虑的问题。综上,针对高原地区沿用平原临床用药方案的问题亟需解决,应着重研究高原与平原地区合理用药的临床疗效差异,发布高原地区合理用药指南,培养和提高高原地区医护人员合理用药意识,提高患者对疾病的知晓率、治疗率和控制率,提高患者用药依从性。

  • 图  1  茚满霉素及其天然类似物

    图  2  茚满霉素中间体(10)的化学合成路线

    图  3  茚满霉素中间体(11)的化学合成路线

    图  4  茚满霉素的化学合成路线

    图  5  茚满霉素的生物合成基因簇、PKS模块、前体合成及后修饰过程推测

  • [1] LIU C M, HERMANN T E, LIU M, et al. X-14547A, a new ionophorous antibiotic produced by Streptomyces antibioticus NRRL 8167. Discovery, fermentation, biological properties and taxonomy of the producing culture[J]. J Antibiot,1979,32(2):95-99. doi:  10.7164/antibiotics.32.95
    [2] MURENETS N V, KUDINOVA M K, KOROBKOVA T P, et al. Kafamycin: a new pyrrol ether antibiotic[J]. Antibiot Med Biotechnol,1987,32(11):811-814.
    [3] LARSEN S H, BOECK L D, MERTZ F P, et al. 16-Deethylindanomycin (A83094A), a novel pyrrole-ether antibiotic produced by a strain of Streptomyces setonii. Taxonomy, fermentation, isolation and characterization[J]. J Antibiot,1988,41(9):1170-1177. doi:  10.7164/antibiotics.41.1170
    [4] LIAN X Y, ZHANG Z Z. Indanomycin-related antibiotics from marine Streptomyces antibioticus PTZ0016[J]. Nat Prod Res,2013,27(23):2161-2167. doi:  10.1080/14786419.2013.793688
    [5] MIAO S. Stawamycin, A new pyrroloketoindane natural product from the cultures of Streptomyces sp[J]. Tetrahedron Lett,1995,36(32):5699-5702. doi:  10.1016/00404-0399(50)11274-
    [6] DIAS L C, JARDIM L S A, FERREIRA A A, et al. Towards the total synthesis of Stawamycin. Synthesis of C11-C21 fragment[J]. J Braz Chem Soc,2001,12(4):463-466. doi:  10.1590/S0103-50532001000400003
    [7] IZUMIKAWA M, KOMAKI H, HASHIMOTO J, et al. Stawamycin analog, JBIR-11 from Streptomyces viridochromogenes subsp. sulfomycini NBRC 13830[J]. J Antibiot,2008,61(5):326-329. doi:  10.1038/ja.2008.47
    [8] FAYE D, MBAYE M D, COUFOURIER S, et al. Zinc mediated straightforward access to diacylpyrroles[J]. Comptes Rendus Chimie,2017,20(5):492-499. doi:  10.1016/j.crci.2017.01.003
    [9] GUMILA C, ANCELIN M L, JEMINET G, et al. Differential in vitro activities of ionophore compounds against Plasmodium falciparum and mammalian cells[J]. Antimicrob Agents Chemother,1996,40(3):602-608. doi:  10.1128/AAC.40.3.602
    [10] ZHANG D, NAIR M G, MURRY M, et al. Insecticidal activity of indanomycin[J]. J Antibiot,1997,50(7):617-620. doi:  10.7164/antibiotics.50.617
    [11] 张鑫, 姜南, 沈雪莉, 等. 土壤链霉菌HS-HY-197抗肿瘤代谢产物的研究[C]//2010年中国药学大会暨第十届中国药师周论文集. 天津, 2010: 4394-4398.
    [12] AZZI N, GRIFFEN E, LIGHT M, et al. An enantioselective desymmetrisation approach to C9-substituted trans-hydrindene rings based on a diastereotopic group-selective intramolecular Diels-Alder reaction[J]. Chem Commun (Camb),2006(47):4909-4911. doi:  10.1039/B607488J
    [13] WHITNEY R A. Cyclic hydroboration of geraniol derivatives: a synthesis of the left-hand portion of X-14547A[J]. Can J Chem,1986,64(4):803-807. doi:  10.1139/v86-132
    [14] CLARKE S L, MCSWEENEY C M, MCGLACKEN G P. Investigation of a novel diamine based chiral auxiliary in the asymmetric alkylation of ketones[J]. Tetrahedron: Asymmetry,2014,25(4):356-361. doi:  10.1016/j.tetasy.2014.01.006
    [15] ROUSH W R, MYERS A G. Antibiotic X-14547A: total synthesis of the right-hand half[J]. J Org Chem,1981,46(7):1509-1511. doi:  10.1021/jo00320a060
    [16] BOECKMAN R K, ENHOLM E J, DEMKO D M, et al. An efficient enantioselective total synthesis of (-)-X-14547A (indanomycin)[J]. J Org Chem,1986,51(24):4743-4745. doi:  10.1021/jo00374a054
    [17] ROEGE K E, KELLY W L. Biosynthetic origins of the ionophore antibiotic indanomycin[J]. Org Lett,2009,11(2):297-300. doi:  10.1021/ol802422n
    [18] RAVINDRAN A, SUNDERRAJAN S, PENNATHUR G. Phylogenetic studies on the prodigiosin biosynthetic operon[J]. Curr Microbiol,2019,76(5):597-606. doi:  10.1007/s00284-019-01665-0
    [19] LI C X, ROEGE K E, KELLY W L. Analysis of the indanomycin biosynthetic gene cluster from Streptomyces antibioticus NRRL 8167[J]. ChemBioChem,2009,10(6):1064-1072. doi:  10.1002/cbic.200800822
    [20] NIEHS S P, DOSE B, SCHERLACH K, et al. Genome mining reveals endopyrroles from a nonribosomal peptide assembly line triggered in fungal-bacterial symbiosis[J]. ACS Chem Biol,2019,14(8):1811-1818. doi:  10.1021/acschembio.9b00406
    [21] MIYANAGA A. Michael additions in polyketide biosyn-thesis[J]. Nat Prod Rep,2019,36(3):531-547. doi:  10.1039/C8NP00071A
    [22] LUHAVAYA H, DIAS M V B, WILLIAMS S R, et al. Enzymology of pyran Ring A formation in salinomycin biosynthesis[J]. Angew Chem Int Ed,2015,54(46):13622-13625. doi:  10.1002/anie.201507090
    [23] KNIRSCHOVÁ R, NOVÁKOVÁ R, FECKOVÁ L, et al. Multiple regulatory genes in the salinomycin biosynthetic gene cluster of Streptomyces albus CCM 4719[J]. Folia Microbiol (Praha),2007,52(4):359-365. doi:  10.1007/BF02932090
    [24] SULTANA A, KALLIO P, JANSSON A, et al. Structure of the polyketide cyclase SnoaL reveals a novel mechanism for enzymatic aldol condensation[J]. EMBO J,2004,23(9):1911-1921. doi:  10.1038/sj.emboj.7600201
    [25] KLYMYSHIN D A, STEFANYSHYN O N, FEDORENKO V A. Role of genes snoaM, snoaL, and snoaE in the biosynthesis of nogalamycin in Streptomyces nogalater Lv65[J]. Cytol Genet,2015,49(3):152-157. doi:  10.3103/S0095452715030081
    [26] ROMMEL K R, LI C X, KELLY W L. Identification of a tetraene-containing product of the indanomycin biosynthetic pathway[J]. Org Lett,2011,13(10):2536-2539. doi:  10.1021/ol200570u
  • [1] 张紫璇, 高苑, 张利, 李佳莉, 徐希科, 祖先鹏.  中药防治急性肺损伤的活性成分及其作用机制研究进展 . 药学实践与服务, 2025, 43(): 1-7. doi: 10.12206/j.issn.2097-2024.202404079
    [2] 周丽城, 欧已铭, 王园.  玉米须黄酮化学成分与药理作用研究进展 . 药学实践与服务, 2025, 43(2): 51-58. doi: 10.12206/j.issn.2097-2024.202309037
    [3] 陶宫佳, 陈林林, 宋泽成, 刘梦肖, 王彦.  苦参碱及衍生物的抗炎作用及其机制研究进展 . 药学实践与服务, 2025, 43(4): 163-168, 194. doi: 10.12206/j.issn.2097-2024.202406035
    [4] 肖农, 陆诗依, 唐文雅, 居敏俐, 徐刚锋, 杨明华.  中成药微生物计数法前处理的影响因素和优化方法 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202403014
    [5] 杨贺英, 罗彩萍, 彭婷, 梁文仪, 沈颂章, 苏娟.  花椒生物碱富集纯化工艺优化及其成分分析 . 药学实践与服务, 2025, 43(2): 75-81. doi: 10.12206/j.issn.2097-2024.202404066
    [6] 施乔, 韩贵焱, 张俊腾, 刘娜.  新型Hsp90抑制剂的设计合成及其抗真菌和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(3): 124-135. doi: 10.12206/j.issn.2097-2024.202501019
    [7] 吴若南, 叶爽, 李墨晨轩, 缪震元, 罗川.  冬凌草甲素磺酰脲衍生物的设计与抗炎活性的研究 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202401048
    [8] 吴若南, 汤文敏, 高林, 吴岳林, 罗川, 缪震元.  RRx-001衍生物的合成和抗肿瘤活性研究 . 药学实践与服务, 2025, 43(): 1-5. doi: 10.12206/j.issn.2097-2024.202408053
    [9] 李惠萍, 陈璐, 张琪金, 黄宝康.  紫苏叶挥发油成分的生物合成、含量测定及生物活性研究进展 . 药学实践与服务, 2025, 43(): 1-6. doi: 10.12206/j.issn.2097-2024.202412058
    [10] 陈静, 何瑞华, 翁月, 徐熠, 刘静, 黄瑾.  基于网络药理学和分子对接技术探究定清片活性成分治疗白血病的作用机制 . 药学实践与服务, 2024, 42(11): 479-486. doi: 10.12206/j.issn.2097-2024.202401073
    [11] 白学鑫, 陈玉平, 盛春泉, 武善超.  具核梭杆菌小分子抑制剂的筛选及其抗结直肠癌活性研究 . 药学实践与服务, 2024, 42(12): 503-507. doi: 10.12206/j.issn.2097-2024.202405009
    [12] 赖立勇, 夏天爽, 徐圣焱, 蒋益萍, 岳小强, 辛海量.  中药青蒿抗氧化活性的谱效关系研究 . 药学实践与服务, 2024, 42(5): 203-210, 216. doi: 10.12206/j.issn.2097-2024.202211012
    [13] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [14] 陈炳辰, 王思真, 郭贝贝, 杨峰.  紫杉醇棕榈酸酯的合成及其脂质体的制备与处方研究 . 药学实践与服务, 2024, 42(9): 379-384, 410. doi: 10.12206/j.issn.2097-2024.202404062
  • 加载中
图(5)
计量
  • 文章访问数:  10922
  • HTML全文浏览量:  2057
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-14
  • 修回日期:  2020-03-11
  • 网络出版日期:  2020-05-20
  • 刊出日期:  2020-05-01

茚满霉素类天然产物的研究进展

doi: 10.12206/j.issn.1006-0111.201910034
    基金项目:  国家自然科学基金(81622044,81573342,41876184);上海市科委基金(18ZR1449600)
    作者简介:

    朱玉琴,硕士研究生,研究方向:分子生物学,Email:zyq15700086152@163.com

  • 中图分类号: R914

摘要: 茚满霉素类天然产物是一类具有反式四氢茚满环(indan)结构的微生物次级代谢产物,该类化合物普遍具有良好的抗菌、杀虫以及抗肿瘤等生物活性,因而引起了药物化学家和生物学家的广泛兴趣。对1979年至今有关茚满霉素类化合物的天然发现、生物活性、化学合成以及生物合成等方面的研究进展进行综述,为该类抗生素的基础和应用研究提供科学参考。

English Abstract

黄琴, 高子昭, 尼样卓玛, 索南格勒, 王荣. 高原低氧环境下硝苯地平控释片对高血压患者降压作用的临床研究[J]. 药学实践与服务, 2022, 40(5): 395-398. doi: 10.12206/j.issn.2097-2024.202205112
引用本文: 朱玉琴, 吴杰群, 孙鹏. 茚满霉素类天然产物的研究进展[J]. 药学实践与服务, 2020, 38(3): 211-215, 226. doi: 10.12206/j.issn.1006-0111.201910034
HUANG Qin, GAO Zizhao, NIYANG Zhuoma, SUONAN Gele, WANG Rong. Clinical trial of nifedipine controlled-release tablets on reducing blood pressure in the treatment of patients with hypertension at high altitude[J]. Journal of Pharmaceutical Practice and Service, 2022, 40(5): 395-398. doi: 10.12206/j.issn.2097-2024.202205112
Citation: ZHU Yuqin, WU Jiequn, SUN Peng. Research progress on indanomycin natural products[J]. Journal of Pharmaceutical Practice and Service, 2020, 38(3): 211-215, 226. doi: 10.12206/j.issn.1006-0111.201910034
  • 聚醚类抗生素是一类重要的微生物次级代谢产物,其结构特征为分子中含有多个环醚单元,且分子一端有羧基,该类抗生素主要由链霉菌产生,具有离子载体性质,容易络合金属离子,常见的聚醚类抗生素有莫能菌素、南昌霉素、尼日利亚菌素等。聚醚类抗生素家族中含有一类特殊的天然产物,即茚满霉素类,该类化合物含有反式四氢茚满环和吡咯酮结构单元,其代表分子是茚满霉素(indanomycin,X-14547A),最早分离自链霉菌Streptomyces sp. NRRL 8167[1]。与其结构相似的化合物还有cafamycin[2]、16-deethylindanomycin[3]及其类似物[4]、homoindanomycin、stawamycin[5-6]和JBIR-11[7]等。茚满霉素类化合物均具有良好的抗菌、杀虫和抗原虫等活性,其特殊的化学结构和显著的生物活性引起了药物学家们的广泛兴趣,不少化学家对其进行全合成,生物学家也对含有该类特殊结构的天然产物的生物合成机制进行研究。

    本文就茚满霉素类化合物的天然发现、生物活性、化学合成和生物合成进行总结,为开发该类天然产物的药用价值提供科学基础,为采用组合生物合成的方法对该类化合物进行结构改造提供新思路。

    • 在从土壤培养物中寻找新抗生素的过程中,Miller课题组从链霉菌Streptomyces sp. NRRL 8167的发酵液中分离得到了茚满霉素(1),为该家族第一例化合物。化合物1能够将1价和2价阳离子从水溶液中萃取到不相溶的有机溶剂中,另外,与一些只能运输特定单价阳离子(如K+或Na+)的离子载体抗生素不同,化合物1还能通过溶剂屏障(CHCl3)将Rb+和Ca2+从一个水相转移到另一个水相,具有介导跨生物膜转运2价阳离子的特殊能力[8],迄今为止,仅有少数离子载体抗生素(如拉沙里菌素和离子霉素等)具有相似的运输能力[1]。化合物1具有良好的抗菌、杀虫和抗原虫等活性[9-10],具有与其他离子载体抗生素类似的抗菌谱,在体外对G+Mycobacterium phleiStreptomyces cellulosaeStaphylococcus aureusBacillus sp. E、Bacillus sp. TA、Sarcina luteaBacillus megate- riumBacillus subtilis的最低抑菌浓度(MIC)分别为3.1、0.8、0.2、0.2、0.2、0.1、0.1、0.1 μg/ml。研究显示,浓度为100 ppm的化合物1连续使用6 d可以使舞毒蛾和烟草天蛾幼虫的数量减少50%,使玉米穗虫的数量减少33%;浓度为20 ppm的化合物1可以使四龄的埃及伊蚊(Aedes aegypti)的死亡率达100%[1]。王继栋等人发现,化合物1对人乳腺癌细胞(MDA-MB-231)和人肝腺癌细胞(HepG-2)具有一定程度的抑制作用,其IC50值分别为14.01和7.26 μg/ml[11]

      Kliuev等人从产生蒽环类抗生素galtamycin的链霉菌培养液中分离得到了一种新型类似物cafamycin(2[2],其与化合物1的区别在于2位甲基被乙基取代,18位乙基被脱除。Occolowitz等人从美国蒙大拿州收集的土壤样品中分离出一种新的链霉菌Streptomyces setonii,并从中分离得到了一种新的类似物,即16-deethylindanomycin(3[3],该化合物对Streptococcus pneumoniae Park I的MIC值为2 μg/ml,对Staphylococcus aureus X1.1、S. aureus V41、S. aureus V400、S. aureus S13E的MIC值为4 μg/ml。当化合物3的浓度为0.31μg/ml时,可以100%抑制柔嫩艾美耳球虫(Emeria tenella)的生长。Zhang等人从海洋链霉菌Streptomyces antibioticus PTZ0016中分离得到了化合物3的类似物,iso-16-deethylindanomycin(4)、16-deethylindanomycin 甲酯(5)和iso-16-deethylindanomycin 甲酯(6),这3种化合物在体外实验中都显示出对金黄色葡萄球菌的抑制活性,其MIC值为4.0~8.0 μg/ml[4]。有趣的是,化合物46分别为化合物35的C-7手性异构体,这一现象在其他茚满霉素类似物中并不多见,提示该菌株中负责呋喃环形成的酶的立体选择性低。Homoindanomycin (7)分离自菌株Streptomyces galbus,其与化合物1唯一的区别在于2位上的甲基被乙基取代。Miao等人从链霉菌菌株Strepto-myces sp.的液体培养物中分离出一种新的天然产物stawamycin(8),化合物8保留了与化合物1类似的吡咯和四氢茚满结构,但不具有呋喃环,并且双键位置和构型与其他化合物相比也有明显区别,另外,该化合物的绝对构型并没有完全确定。化合物8具有抗人类疱疹病毒EB病毒(epstein-barr virus,EBV)活性,可以抑制病毒转录因子BZLF1与其DNA靶标的结合[5]。Miho等人从绿色链霉菌Streptomyces viridochromogenes的菌丝体中分离得到了JBIR-11(9),是化合物8的衍生物,不同的是化合物9在末端羧基上结合了一分子色氨酸,而且化合物9具有抗肿瘤活性,对人纤维肉瘤HT1080细胞具有生长抑制作用,其IC50值为25 μmol/L[7]。茚满霉素及其天然类似物的结构式如图1所示。

      图  1  茚满霉素及其天然类似物

    • 由于茚满霉素中不同寻常的结构,如反式四氢茚满环和吡咯酮,其全合成被多次报道[12-15]。Boeckman[16]等人对茚满霉素进行了逆合成分析,选择利用串联Wittig反应与分子内Diels-Alder环加成反应来合成反式四氢茚满环骨架。吡喃醛中间体(10)和磷叶立德(11)发生wittig反应得到中间体(20),随后由分子内[4+2] Diels-Alder环加成反应得到化合物1

      化合物10的构建以活泼醛(12)为原料,在二烷基铜锂的作用下发生羟醛缩合反应得到醇类中间体(13),化合物13在过量臭氧下双键发生断裂后,被硫醚还原得到化合物14。在二叔丁基联苯锂的存在下,化合物14发生锂盐化,最后经PPTS催化得到化合物10图2)。

      图  2  茚满霉素中间体(10)的化学合成路线

      化合物11的合成以二醇化合物(15)为起始原料,在DMAP催化作用下,伯羟基发生硅基烷基化反应,随后与二异丁基氢化铝在−78 ℃发生Claisen重排,得到烯醇(16)。化合物16进行磺基化反应后,以氰化钾作为氰源,合成氰化物(17)。化合物17在四丁基氟化铵和重金属氧化剂PDC作用下,得到α, β不饱和醛(18)。最后将化合物18与格氏试剂乙烯基溴化镁在−78 ℃进行无水无氧反应,由此得到的化合物19再与三苯基膦溴化氢反应,生成化合物11图3)。

      图  3  茚满霉素中间体(11)的化学合成路线

      最后,化合物1011在叔丁醇钾的作用下,发生wittig反应得到中间体20。化合物20i-Bu2AlH还原为醛,随后在1,2-二氯乙烷中与吡咯酮(21)反应,先后进行wittig反应与分子内Diels-Alder环加成反应,得到化合物22。化合物22在三甲基碘硅烷作用下脱保护,再与过量的三氧化铬发生氧化反应,得到目标化合物1图4)。

      图  4  茚满霉素的化学合成路线

      该化合物的全合成历经21步,总体收率不高。反应过程需要使用锂化物、氢化铝、格氏试剂等危险品,还需要–78 ℃的低温无水反应,条件苛刻,并且使用到了剧毒化合物氰化钾、重金属试剂PDC及三氧化铬。因此,该方法对环境不友好,不符合绿色化学的理念,有待进一步的改善。

    • 化合物1是杂合了非核糖体肽合成酶-聚酮合酶(NRPS-PKS)装配线的天然产物,Roege等人用13C标记的前体喂养实验确定了其代谢起源,包括1个L-脯氨酸、6个丙二酰辅酶A、2个甲基丙二酰辅酶A和2个乙基丙二酰辅酶A[17-18]。Kelly课题组从抗生素链霉菌NRRL 8167中确认了化合物1的生物合成基因簇idm,其大小为80 kb左右(图5A[19]。其中16个基因参与了化合物1的生物合成(idm A-P),包括吡咯合成[20](pyrrole biosyn-thesis,idmI-K),调控和抗性基因(idmCDG),聚酮合成酶基因(idm L-P),聚酮前体合成基因(idmBEF),后修饰基因(idmAH),另外7个基因经基因敲除实验验证与化合物1的合成无关(orf 1-4orf 21-23)。起始单元吡咯-2-甲酰CoA是由L-脯氨酸经过脯氨酰依赖的转移酶(idmJ),载体蛋白(idmK)和黄素依赖的L-脯氨酰CoA脱氢酶(idmI)3个酶催化形成的(图5C)。IdmJ基因缺失实验证实idmJ参与了化合物1的生物合成。编码PKS的基因位于idmI-K的下游,包含编码idmL-P 5个酶,根据生物信息分析划分成10个模块:idmL(模块1~3),idmM(模块4和5),idmN(模块6~8),idmO(模块9),idmP(模块10和11)。PKS模块的结构域由酮基合成酶(KS)、酰基转移酶(AT)、脱氢酶(DH)、烯酰还原酶(ER)、酮基还原酶(KR)和酰基载体蛋白(ACP)等结构域组成,根据模块中的结构域分析,推测化合物1的PKS骨架形成与延伸过程如图5B所示。

      图  5  茚满霉素的生物合成基因簇、PKS模块、前体合成及后修饰过程推测

      模块1~10完成了化合物1的PKS骨架搭建,模块11是化合物1生物合成中的特殊PKS模块,它不参与聚酮链的延伸,而且它的模块结构不完整,仅包含一个KS单元、一个AT单元和一个特殊的cyc11单元,其中,cyc11单元与盐霉素(salinomycin)生物合成中的吡喃合成酶(SalBIII)的同源性较高,序列比对显示,cyc11(Asp28和Asp94)含有SalBIII(Asp38和Asp104)活性必需的残基[21-22],因此cyc11可能具有与盐霉素中吡喃形成类似的催化机制[23],即负责催化化合物23的C-3羟基脱水生成α, β-不饱和酮,然后进行C-7羟基的Michael加成产生化合物24。根据生物信息学预测,茚满霉素PKS模块最终对应的产物为含19-OH的中间体,而不是化合物23,因为其PKS模块2中无DH结构域,不能直接产生Δ19(20)双键。但是,该位置上双键需要作为化合物24上的亲双烯体进行[4+2]环加成以产生茚满环,具体哪个酶负责催化形成Δ19(20)双键目前尚不明确。另外,序列比对表明idmH与环化酶SnoaL[24-25]存在很大的相似性,所以负责[4+2]环化形成茚满环结构的酶可能是idmH[19, 26],但目前尚无体外生化反应验证。根据生物信息学推测的茚满霉素后修饰合成路线如图5D所示。

    • 含反式四氢茚满环结构的化合物在天然产物中比较少见,自1979年茚满霉素首次报道以来,这类化合物就引起了药物化学家和生物学家的广泛兴趣,本综述总结了其在生物活性、化学全合成以及生物合成等方面获得的研究成果,为该类天然产物的药用价值开发提供科学依据。虽然茚满霉素的生物合成步骤尚未完全阐明,但随着其生物合成基因簇的发现,利用组合生物合成的方法对该类化合物进行结构改造将成为可能。

参考文献 (26)

目录

/

返回文章
返回