-
近年来,随着广谱抗生素的使用、艾滋病病毒感染、肿瘤放疗/化疗以及器官移植患者的不断增多,导管插管等越来越多的生物材料应用于人体,侵袭性真菌感染的发病率显著上升,对人类健康乃至生命造成严重威胁。在临床真菌感染中,白假丝酵母(Candida albicans)是最常见的致病真菌之一[1]。研究表明,白假丝酵母能通过黏附于人上皮及植入的导管或支架等表面,形成生物被膜(biofilm),从而在免疫功能低下的人群中导致系统性感染。白假丝酵母生物被膜的一个严重后果是对临床常用抗真菌药物呈高度耐药。与浮游型白假丝酵母相比,生物被膜型白假丝酵母对两性霉素B、氟康唑的敏感性仅是浮游菌的几十分之一。生物被膜形成是导致临床上许多系统性、反复性感染的重要因素,是抗真菌感染治疗失败的主要原因之一[2-3]。因此,研究开发抗白假丝酵母生物被膜药物对于抗真菌感染的治疗具有重要意义。
山奈酚(kaempferol,KAE)又名山柰素、山柰黄酮醇,其分子结构见图1。山奈酚属于黄酮类化合物,主要来源于姜科植物山柰的根茎。同时,该化合物广泛存在于多种蔬菜及水果中。研究显示,山奈酚具有抗肿瘤、抗炎、抗氧化、抑制血小板聚集及抗病毒等多种生物学活性[4-6]。本文旨在研究山奈酚抗白假丝酵母生物被膜活性并探索其潜在作用机制,为临床抗真菌感染提供新思路。
-
白假丝酵母国际通用株SC5314(C. albicans SC5314)由上海市皮肤病医院中心实验室保存。山奈酚(美国Sigma公司),二甲亚砜(DMSO,国药化学试剂有限公司)。将山奈酚溶于DMSO配制成母液,使用时以RPMI1640稀释至所需浓度。XTT(化学名:2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide)和甲萘醌试剂(美国Sigma公司),分别用PBS、丙酮溶解配制成母液。真菌RNA抽提试剂盒(北京天恩泽基因科技公司),RNA反转录、PrimeScript RT Master Mix Perfect RealTime及SYBR Premix ExTaqTM试剂(TaKaRa生物公司)。
沙氏固体培养基(SDA):蛋白胨10 g, D-葡萄糖40 g,琼脂粉20 g,以去离子水溶解并定容至1 000 ml,高压灭菌(121 ℃,15 min),室温冷却凝固后备用。YPD液体培养基:蛋白陈10 g,酵母提取物10 g,D-葡萄糖20 g,以去离子水溶解并定容至1 000 ml,分装后高压灭菌(121 ℃,15 min)备用。RPMI1640液体培养基:将RPMI1640粉末(Gibco BRL公司)10 g,MOPS(涯泰生物科技公司)34.5 g,NaHCO32.0 g,以去离子水溶解并定容至1 000 ml,用NaOH调节pH至7.0,定容至1 000 ml,微孔滤膜过滤除菌,4 ℃保存。
-
恒温振荡培养箱(江苏太仓市实验设备厂),高速冷冻离心机(德国Eppendorf公司),超净化工作台(苏州安泰空气技术有限公司),96孔细胞培养板(美国Corning公司),Infinite M200多功能酶标仪(Austria TECAN公司),ABl7500实时定量 RT-PCR仪(Applied Biosystems公司)。
-
挑取白假丝酵母SC5314甘油冻存菌划于SDA平板,置于30 ℃恒温培养箱培养3 d,待长出单克隆后,挑取菌株单克隆接种于新鲜YPD液体培养基中,再于30 ℃、200 r/min振荡培养过夜(16 h),使其到达对数生长期后期。
-
白假丝酵母生物被膜培养实验参照文献[7]进行。离心收集上述培养基至对数生长后期的白假丝酵母菌液,PBS洗涤3次,重悬于RPMI1640培养基,计数并调节菌液浓度为1×106 CFU/ml。在96孔细胞培养板每孔加入100 μl上述菌液,37 ℃静置培养2 h,弃上清液,于各孔中分别加入100 μl含有不同浓度山奈酚的RPMIl640培养基,37 ℃继续静置培养24 h。
-
离心收集培养至对数生长后期的白假丝酵母菌液,PBS洗涤3次,重悬于RPMI1640培养基,计数并调节菌液浓度为1×106 CFU/ml。在96孔细胞培养板每孔加入100 μl上述菌液,37 ℃静置培养2 h,弃上清液,于各孔中加入新鲜RPMIl640培养基,37 ℃继续静置培养24 h,弃上清液,PBS洗涤2次,于各孔中分别加入100 μl含有不同浓度山奈酚的RPMIl640培养基,37 ℃继续静置培养24 h。
-
取出上述培养的生物被膜,弃上清液,PBS洗2次,随后加入200 μlXTT-甲萘醌溶液(含有0.5 mg/mlXTT-1 μmol/L甲萘醌),于37 ℃黑暗处静置孵育2 h后取出。采用多功能酶标检测仪于492 nm处测定光密度(OD)值。
-
生物被膜基质(biomass)含量测定参照文献[8]方法进行。在预先放置有硅胶片(1.5 cm×1.5 cm,美国Bentec医药公司)的12孔培养板中,每孔加入2 ml白假丝酵母菌液(1×106 CFU/ml于RPMI1640培养基中),黏附2 h,弃上清液,加入含有不同浓度山奈酚的新鲜RPMI1640培养基,37 ℃继续静置培养24 h,弃上清液,PBS洗涤2次,于各孔中分别加入100 μl含有不同浓度山奈酚的RPMIl640培养基,37 ℃继续静置培养24 h,取出上述培养的生物被膜,弃上清液,PBS洗2次,晾干至恒重并称重,所得重量减去硅胶片本身质量即为生物被膜基质量。
-
将过夜培养至对数生长后期的白假丝酵母,于次日按照1%接种于新鲜YPD液体培养基,30 ℃继续振荡培养4 h,PBS洗涤2次,重悬于含有16 μg/ml的山奈酚YPD+FBS培养基(含有10%胎牛血清),调整菌浓度为l×l06 CFU/ml,于细胞培养板中37 ℃静置培养3.5 h,显微镜下观察白假丝酵母菌丝形成情况。
-
采用水-烃两相分离法测定细胞表面疏水性[9]。将过夜培养至对数生长后期的白假丝酵母于次日按照1%量接种于新鲜YPD液体培养基,30 ℃继续振荡培养4 h,随后加入不同浓度山奈酚,于30 ℃继续振荡培养4 h,离心收集菌液以PBS洗涤2次,重悬于YPD液体培养基,调整菌液至OD600=1.0,每组取1.2 ml菌悬液于另一离心管中,加入0.3 ml正辛烷,涡旋振荡混匀3 min,室温静置使两相分离,立即测定上层水相的OD600值,以未加正辛烷的YPD培养基为阴性对照。白假丝酵母细胞表面疏水性值的计算公式:相对细胞表面疏水性=[(OD600对照组−OD600实验组)/OD600对照组]×100%。
-
应用Primer Premier5软件设计用于实时定量RT-PCR扩增的目的基因引物序列(表1)。引物由上海生工生物工程技术有限公司合成。
表 1 引物序列
引物序列(5′-3′) HWP1-F TGGTGCTATTACTATTCCGG HWP1-R CAATAATAGCAGCACCGAAG EFG1-F TATGCCCCAGCAAACAACTG EFG1-R TTGTTGTCCTGCTGTCTGTC CPH1-F ATGCAACACTATTTATACCTC CPH1-R ATGCAACACTATTTATACCTC ALS1-F TTGGGTTGGTCCTTAGATGG ALS1-R ATGATTCAAAGCGTCGTTC ALS3-F CTAATGCTGCTACGTATAATT ALS3-R CCTGAAATTGACATGTAGCA CSH1-F CTGTCGGTACTATGAGATTG CSH1-R GATGAATAAACCCAACAACT TUP1-F GATTGACGAG TCCTCCAACG TUP1-R AAACCAACCTATCGCCATCA NRG1-F TATCAGTATG CTGCTCCTCC NRG1-R GGAGTTGGCCAGTAAATCAC BCR1-F AGTATAATGCTCCTGGTAAGAA BCR1-R ACGTAAAGGAGGCACGGCATA 18S rRNA-F AATTACCCAATCCCGACAC 18S rRNA-R TGCAACAACTTTAATATACGC -
将培养至对数生长后期的白假丝酵母菌液,PBS洗涤3次,重悬于RPMI1640培养基,计数并调节菌液浓度为l×l06 CFU/ml。将上述菌液在细胞培养瓶中37 ℃静置培养2 h,弃上清液,随后加入含有16 μg/ml山奈酚的新鲜RPMIl640培养基,37 ℃继续静置培养24 h。离心收集菌体,PBS洗涤3次,按照北京天恩泽基因科技公司真菌RNA抽提试剂盒的操作说明进行总RNA的抽提,抽提完毕后加入100 μl去除RNA酶的水(经DEPC处理)溶解RNA,采用分光光度计测定RNA纯度及含量,A260/A280比值在1.8~2.0之间为合格。按照TaKaRa生物公司的反转录试剂盒操作说明,将上述RNA反转录为cDNA。取上述逆转录产物进行PCR扩增,以18S rRNA作为内参基因。反应条件为预变性95 ℃,30 s,重复40个循环。循环参数为:95 ℃,5 s;60 ℃,20 s;72 ℃,30 s。溶解曲线采用60~95 ℃,温度改变速率为每秒0.1 ℃。扩增产物采用ABI 7500 SDS软件系统进行分析。采用2−(⊿⊿Ct)法表示基因表达水平。
-
实验数据应用GraphPad Prism 6.0软件进行作图及统计学检验,以(
$\bar x \pm s$ )表示,每个实验至少重复3次,以P<0.05为差异显著,P<0.01为差异极显著。
Study on the antibiofilm activity of kaempferol in Candida albicans
-
摘要:
目的 研究山奈酚抗白假丝酵母生物被膜的作用及其可能机制。 方法 测定山奈酚对白假丝酵母处于形成过程中的生物被膜和成熟生物被膜代谢活性的影响;测定山奈酚对生物被膜基质产生水平的影响;显微镜下观察山奈酚对菌丝形成的抑制作用;水-烃两相分离法测定山奈酚对白假丝酵母细胞表面疏水性的影响;实时定量RT-PCR法测定山奈酚对生物被膜形成相关基因表达的影响。 结果 山奈酚抑制白假丝酵母生物被膜形成,且呈剂量依赖性,同时具有抗成熟生物被膜作用,显著降低生物被膜基质含量;与对照组相比,山奈酚明显抑制白假丝酵母菌丝形成并降低其细胞表面疏水性;经山奈酚处理的白假丝酵母生物被膜形成相关基因BCR1、NRG1和TUP1的表达升高,同时HWP1、EFG1、CPH1、ALS1、ALS3和CSH1的表达下降。 结论 山奈酚具有抗白假丝酵母生物被膜活性,其机制与抑制菌丝形成及降低其细胞表面疏水性相关。 Abstract:Objective To study the action of kaempferol (KAE) against Candida albicans biofilms and explore the potential mechanisms. Methods Biofilm metabolic activity assay was used to investigate the action of KAE against C. albicans biofilm formation as well as mature biofilm. The inhibition of KAE in hyphal formation was examined by microscope. The water-hydrocarbon two-phase separation assay was used to test the effect of KAE on the cell surface hydrophobicity of C. albicans. The mRNA expression of the genes involved in biofilm formation was determined by real time RT-PCR. Results KAE showed inhibition effect on C. albicans biofilm formation in a dose-dependent manner. Moreover, KAE inhibited mature biofilm. The biomass of biofilm was reduced upon KAE treatment. KAE inhibited hyphal formation and reduced the cell surface hydrophobicity of C. albicans. In the presence of KAE, the mRNA expression of the genes involved in biofilm formation was changed, with the up-regulation of BCR1,NRG1,TUP1 and down-regulation of HWP1,EFG1,CPH1,ALS1,ALS3 and CSH1. Conclusion KAE showed antifungal activity against C. albicans biofilm. The mechanisms may relate to the inhibition of hyphal formation and reduction of cell surface hydrophobicity. -
Key words:
- kaempferol /
- Candida albicans /
- biofilm /
- adhesion /
- hyphae
-
表 1 引物序列
引物序列(5′-3′) HWP1-F TGGTGCTATTACTATTCCGG HWP1-R CAATAATAGCAGCACCGAAG EFG1-F TATGCCCCAGCAAACAACTG EFG1-R TTGTTGTCCTGCTGTCTGTC CPH1-F ATGCAACACTATTTATACCTC CPH1-R ATGCAACACTATTTATACCTC ALS1-F TTGGGTTGGTCCTTAGATGG ALS1-R ATGATTCAAAGCGTCGTTC ALS3-F CTAATGCTGCTACGTATAATT ALS3-R CCTGAAATTGACATGTAGCA CSH1-F CTGTCGGTACTATGAGATTG CSH1-R GATGAATAAACCCAACAACT TUP1-F GATTGACGAG TCCTCCAACG TUP1-R AAACCAACCTATCGCCATCA NRG1-F TATCAGTATG CTGCTCCTCC NRG1-R GGAGTTGGCCAGTAAATCAC BCR1-F AGTATAATGCTCCTGGTAAGAA BCR1-R ACGTAAAGGAGGCACGGCATA 18S rRNA-F AATTACCCAATCCCGACAC 18S rRNA-R TGCAACAACTTTAATATACGC -
[1] ACHKAR J M, FRIES B C. <italic>Candida</italic> infections of the genitourinary tract[J]. ClinMicrobiolRev,2010,23(2):253-273. [2] ANDERSON J B. Evolution of antifungal-drug resistance: mechanisms and pathogen fitness[J]. Nat Rev Microbiol,2005,3(7):547-556. [3] GULATI M, NOBILE C J. <italic>Candidaalbicans</italic> biofilms: development, regulation, and molecular mechanisms[J]. Microbes Infect,2016,18(5):310-321. doi: 10.1016/j.micinf.2016.01.002 [4] 陈育华, 周克元, 袁汉尧. 山奈酚药效的研究进展[J]. 广东医学, 2010, 31(8):1064-1066. doi: 10.3969/j.issn.1001-9448.2010.08.058 [5] KIM B W, LEE E R, MIN H M, et al. Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition[J]. Cancer Biol Ther,2008,7(7):1080-1089. [6] RAJENDRAN P, RENGARAJAN T, NANDAKUMAR N, et al. Kaempferol, a potential cytostatic and cure for inflammatory disorders[J]. Eur J Med Chem,2014,86:103-112. [7] CAO Y Y, CAO Y B, XU Z, et al. cDNA microarray analysis of differential gene expression in <italic>Candidaalbicans</italic> biofilm exposed to farnesol[J]. Antimicrob Agents Chemother,2005,49(2):584-589. doi: 10.1128/AAC.49.2.584-589.2005 [8] NOBILE C J, ANDES D R, NETT J E, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation <italic>in vitro</italic> and <italic>in vivo</italic>[J]. PLoS Pathog,2006,2(7):e63. [9] YAN Y, TA NF, MIAO H, et al. Effect of shikoninagainst <italic>Candida albicans</italic>biofilms[J]. Front Microbiol,2019,10:1085. doi: 10.3389/fmicb.2019.01085 [10] SHAO J, ZHANG M X, WANG T M, et al. The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant <italic>Candidaalbicans</italic>[J]. Pharm Biol,2016,54(6):984-992. doi: 10.3109/13880209.2015.1091483 [11] SUN F J, QU F, LING Y, et al. Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies[J]. Future Microbiol,2013,8(7):877-886. doi: 10.2217/fmb.13.58 [12] AL-FATTANI M A, DOUGLAS L J. Biofilm matrix of <italic>Candidaalbicans</italic> and <italic>Candidatropicalis</italic>: chemical composition and role in drug resistance[J]. J Med Microbiol,2006,55(Pt 8):999-1008. [13] NETT J, LINCOLN L, MARCHILLO K, et al. Putative role of beta-1, 3 glucans in <italic>Candidaalbicans</italic> biofilm resistance[J]. Antimicrob Agents Chemother,2007,51(2):510-520. doi: 10.1128/AAC.01056-06 [14] CHAFFIN W L. <italic>Candidaalbicans</italic> cell wall proteins[J]. Microbiol Mol Biol Rev,2008,72(3):495-544. doi: 10.1128/MMBR.00032-07 [15] BRAUN B R, JOHNSON A D. Control of filament formation in <italic>Candidaalbicans</italic> by the transcriptional repressor TUP1[J]. Science,1997,277(5322):105-109. doi: 10.1126/science.277.5322.105 [16] BRAUN B R, KADOSH D, JOHNSON A D. NRG1, a repressor of filamentous growth in <italic>C.albicans</italic>, is down-regulated during filament induction[J]. EMBO J,2001,20(17):4753-4761. doi: 10.1093/emboj/20.17.4753 [17] CLEARY I A, MULABAGAL P, REINHARD S M, et al. Pseudohyphal regulation by the transcription factor Rfg1p in <italic>Candidaalbicans</italic>[J]. Eukaryotic Cell,2010,9(9):1363-1373. doi: 10.1128/EC.00088-10 [18] LU Y, SU C, WANG A, et al. Hyphal development in <italic>Candidaalbicans</italic> requires two temporally linked changes in promoter chromatin for initiation and maintenance[J]. PLoS Biol,2011,9(7):e1001105. doi: 10.1371/journal.pbio.1001105 [19] SENEVIRATNE C J, JIN L, SAMARANAYAKE L P. Biofilm lifestyle of <italic>C.andida</italic>: a mini review[J]. Oral Dis,2008,14(7):582-590. doi: 10.1111/j.1601-0825.2007.01424.x [20] TRONCHIN G, PIHET M, LOPES-BEZERRAL M, et al. Adherence mechanisms in human pathogenic fungi[J]. Med Mycol,2008,46(8):749-772. doi: 10.1080/13693780802206435 [21] NOBILE C J, FOX E P, NETT J E, et al. A recently evolved transcriptional network controls biofilm development in <italic>Candidaalbicans</italic>[J]. Cell,2012,148(1-2):126-138. doi: 10.1016/j.cell.2011.10.048