-
全球每年由念珠菌引发的侵袭性真菌感染病例约有70万例[1],特别是在重症监护室中,患者往往由于免疫力低下,更易受到真菌感染所带来的危害。据报道,成年人感染念珠菌血症的死亡率高达40%~70%[2]。与此同时,白念珠菌(Candida albicans)作为临床最常见的机会致病性念珠菌,又是全球范围内侵袭性念珠菌的最主要病原体[1]。因此,针对白念珠菌感染的药物治疗研究,一直是人们关注的热点问题。目前,临床上广泛应用于治疗白念珠菌感染的抗真菌药物主要有唑类(氟康唑、伊曲康唑)、多烯类(两性霉素B)、棘白菌素类(卡泊芬净)和5-氟胞嘧啶。然而,随着临床上抗真菌药物的滥用,耐药菌株的报道也越来越多,严重影响了常规抗真菌药的疗效。更加不幸的是,近年来研究发现,即便是严格使用经体外药敏试验提示敏感的抗真菌药物进行治疗,仍有部分患者表现出迁延不愈和复发的症状,这种临床疗效与菌株低耐药性不一致的现象可能与白念珠菌药物耐受菌株的增加有关[3]。
耐受性是指药物敏感菌株在最低抑菌浓度(MIC)以上的高浓度药物中的生长能力,其特征是能够在高剂量抗真菌药物中存活而MIC不变。相反,耐药性则通常是由遗传突变引起的,其特征是测试菌株的 MIC升高[4]。临床菌株的抗真菌药物敏感性实验是在24 h读取的,但耐受菌株生长缓慢,在培养24~48 h后才会显现出高于MIC下生长的能力,因此,在临床检测中,真菌对药物的耐受性在很大程度上被忽视[3, 5]。然而,随着持续性念珠菌死亡率的增加,人们对菌株耐受性问题的关注也日益增多[6]。已有多项研究表明,临床分离株中有20%~60%的菌株表现出对药物的耐受性,进一步解释了临床菌株耐受性和感染治疗失败的关联[3, 5]。由此可见,白念珠菌的耐受问题给目前的临床治疗带来了更加严峻的挑战,积极应对真菌耐受性问题,开发相应的药物和治疗策略迫在眉睫。
小檗碱(BBR)又称黄连素,是一种分离自植物黄连根茎的天然季苄基异喹啉生物碱[7]。BBR临床上广泛运用于治疗胃肠炎,细菌性痢疾等肠道疾病,它的抗菌谱较广,在体外对多种革兰阳性及阴性细菌均具有抑菌作用,且具有安全性高,不良反应少的特点。据报道,BBR在其浓度为10~50 mg/L时具有一定的抗真菌作用[8]。课题组前期研究显示,BBR与氟康唑(FLC)联合使用具有显著的协同抗耐药真菌作用,通过本课题的进一步研究发现,BBR与FLC联合使用对FLC耐受白念珠菌也具有良好的抑制作用,为抗耐受真菌药物的研发提供了一定的实验基础。
-
实验选取了8株白念珠菌(含7株临床株)测定其对FLC的MIC值(表1)。8株白念珠菌的MIC值均小于0.5 μg/ml,该结果表明,这8株白念珠菌皆为FLC敏感菌株。
表 1 测定8株白念珠菌对FLC的MIC值
菌株 MIC50(μg/ml) MIC80(μg/ml) SC5314 0.125 0.25 Y0109 0.25 0.5 9821 0.125 0.125 7879 0.125 0.125 7654 0.125 0.125 9296 0.25 0.25 9161 0.25 0.25 7781 0.125 0.125 -
利用琼脂平皿纸片扩散实验,考察上述8株敏感型白念珠菌对FLC的耐受性。结果显示,在单用FLC的情况下,恒温培养24 h后,8株菌株均可观察到明显的抑菌圈,而培养48 h后,在菌株 Y0109、9821、7879、7654、9296的抑菌圈中,可以观察到明显的菌落生长,而其余菌株的抑菌圈内无菌落生长,该结果表明,菌株Y0109、9821、7879、7654、9296对FLC产生了耐受现象,可将其归类为FLC耐受菌株(图1)。
-
从考察菌株耐受性的抑菌圈实验中可以看出,5株氟康唑耐受菌株根据耐受强度可大致分为2类:高度耐受菌株Y0109、7879、7654;低度耐受菌株9821、9296。课题组从这2类中分别选择了Y0109及9821作为研究对象,利用琼脂平皿纸片扩散实验考察BBR与FLC联用是否具有抗FLC耐受白念珠菌作用。结果显示,耐受菌Y0109和9821在培养48 h后,与不含BBR的对照培养皿相比,含不同浓度(2~16 μg/ml)BBR平皿上的FLC载药滤纸片周围形成了明显的抑菌圈,抑菌圈内的菌落数随着BBR浓度的升高而逐渐减少,抑菌圈随BBR浓度的增加而逐渐清晰,随FLC载药量的增大而增大,显示出剂量依赖关系(图2)。上述结果表明,BBR与FLC联合用药具有良好的抗FLC耐受白念珠菌的作用。
Study on the effect of berberine combined with fluconazole on Candida albcians tolerant strains
-
摘要:
目的 研究小檗碱(BBR)与氟康唑(FLC)联合用药的体外抗耐受白念珠菌作用。 方法 利用微量液基稀释法测定FLC单用对8株白念珠菌的最低抑菌浓度(MIC)以确定其对FLC的敏感性;通过琼脂平皿纸片扩散实验从FLC敏感菌株中筛选出FLC耐受菌株;利用琼脂平皿纸片扩散实验考察BBR与FLC联合用药对FLC耐受白念珠菌的作用。 结果 选取的8株白念珠菌皆为FLC敏感菌株,其MIC50值均<0.5 μg/ml;菌株Y0109、9821、7879、7654、9296在恒温培养48 h后抑菌圈内出现菌落生长,表现出对FLC的耐受现象;菌株Y0109与9821在BBR与FLC联用时,恒温培养48 h后抑菌圈内的菌落数随BBR浓度的升高而逐渐减少,抑菌圈随BBR浓度的升高而逐渐清晰,随FLC载药量的增大而增大,显示出剂量依赖关系。 结论 BBR与FLC联合用药具有良好的抗FLC耐受白念珠菌效果。 Abstract:Objective To investigate the combined effect of berberine (BBR) and fluconazole (FLC) on FLC-tolerant Candida albicans in vitro. Methods The sensitivity of 8 strains of Candida albicans to FLC was assessed by determining their minimal inhibitory concentration (MIC) using broth microdilution method. FLC-tolerant strains were screened from FLC-sensitive strains by disk diffusion assay. The effect of BBR combined with FLC on FLC-tolerant Candida albicans was investigated by disk diffusion assay. Results All eight strains of Candida albicans exhibited sensitivity to FLC, with minimal inhibitory concentration (MIC50) values below 0.5 μg/ml. Strains Y0109, 9821, 7879, 7654, and 9296 displayed colony growth in the inhibition zone after 48 hours of constant temperature incubation, indicating FLC tolerance. When strains Y0109 and 9821 were subjected to a combination of BBR and FLC, the number of colonies within the inhibition zone decreased progressively with the increase of BBR concentration following a 48 h constant temperature culture. The inhibition zone became clear with the increasing of BBR concentration and increased with the increase of FLC loading, which showed a dose-dependent relationship. Conclusion The interaction between BBR and FLC demonstrated efficacy against FLC-tolerant strains. -
Key words:
- Candida albicans /
- berberine /
- fluconazole /
- drug combination /
- drug tolerance
-
表 1 测定8株白念珠菌对FLC的MIC值
菌株 MIC50(μg/ml) MIC80(μg/ml) SC5314 0.125 0.25 Y0109 0.25 0.5 9821 0.125 0.125 7879 0.125 0.125 7654 0.125 0.125 9296 0.25 0.25 9161 0.25 0.25 7781 0.125 0.125 -
[1] LOGAN C, MARTIN-LOECHES I, BICANIC T. Invasive candidiasis in critical care: challenges and future directions[J]. Intensive Care Med, 2020, 46(11):2001-2014. doi: 10.1007/s00134-020-06240-x [2] LASS-FLÖRL C, KANJ S S, GOVENDER N P, et al. Invasive candidiasis[J]. Nat Rev Dis Primers, 2024, 10(1):20. doi: 10.1038/s41572-024-00503-3 [3] ROSENBERG A, ENE I V, BIBI M, et al. Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia[J]. Nat Commun, 2018, 9(1):2470. doi: 10.1038/s41467-018-04926-x [4] KE W X, XIE Y Y, CHEN Y Y, et al. Fungicide-tolerant persister formation during cryptococcal pulmonary infection[J]. Cell Host Microbe, 2024, 32(2): 276-289. e7. [5] DRUSEIKIS M, MOTTOLA A, BERMAN J. The metabolism of susceptibility: clearing the FoG between tolerance and resistance in Candida albicans[J]. Curr Clin Microbiol Rep, 2023, 10(2):36-46. doi: 10.1007/s40588-023-00189-3 [6] FENG Y R, LU H, WHITEWAY M, et al. Understanding fluconazole tolerance in Candida albicans: implications for effective treatment of candidiasis and combating invasive fungal infections[J]. J Glob Antimicrob Resist, 2023, 35:314-321. doi: 10.1016/j.jgar.2023.10.019 [7] RAUF A, ABU-IZNEID T, KHALIL A A, et al. Berberine as a potential anticancer agent: a comprehensive review[J]. Molecules, 2021, 26(23):7368. doi: 10.3390/molecules26237368 [8] 江涛, 曹煜, 赵秀华, 等. 22种中草药有效成分抗真菌研究及新剂型应用[J]. 中华皮肤科杂志, 1999, 32(5):316-318. doi: 10.3760/j.issn:0412-4030.1999.05.007 [9] LEE J S, JUNG W K, JEONG M H, et al. Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway[J]. Int J Toxicol, 2012, 31(1):70-77. doi: 10.1177/1091581811423845 [10] AHSAN H, REAGAN-SHAW S, BREUR J, et al. Sanguinarine induces apoptosis of human pancreatic carcinoma AsPC-1 and BxPC-3 cells via modulations in Bcl-2 family proteins[J]. Cancer Lett, 2007, 249(2):198-208. doi: 10.1016/j.canlet.2006.08.018 [11] COWEN L E, SINGH S D, KÖHLER J R, et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease[J]. Proc Natl Acad Sci U S A, 2009, 106(8):2818-2823. doi: 10.1073/pnas.0813394106 [12] LEVIN-REISMAN I, RONIN I, GEFEN O, et al. Antibiotic tolerance facilitates the evolution of resistance[J]. Science, 2017, 355(6327):826-830. doi: 10.1126/science.aaj2191 [13] QUAN H, CAO Y Y, XU Z, et al. Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole[J]. Antimicrob Agents Chemother, 2006, 50(3):1096-1099. doi: 10.1128/AAC.50.3.1096-1099.2006 [14] LI D D, XU Y, ZHANG D Z, et al. Fluconazole assists berberine to kill fluconazole-resistant Candida albicans[J]. Antimicrob Agents Chemother, 2013, 57(12):6016-6027. doi: 10.1128/AAC.00499-13 [15] BERMAN J, KRYSAN D J. Drug resistance and tolerance in fungi[J]. Nat Rev Microbiol, 2020, 18(6):319-331. doi: 10.1038/s41579-019-0322-2 [16] IYER K R, ROBBINS N, COWEN L E. The role of Candida albicans stress response pathways in antifungal tolerance and resistance[J]. iScience, 2022, 25(3):103953. doi: 10.1016/j.isci.2022.103953