-
肾病综合征(NS)是一类临床表现为大量蛋白尿、低蛋白血症、水肿及高脂血症的肾小球疾病[1]。2021年全球肾脏病预后指南指出,他克莫司(TAC)可作为难治性NS患者的一线治疗药物[2]。但TAC的治疗窗窄、不良反应多、药动学个体差异大,受体质量、基因、联合用药等多种因素的影响明显[3-4],用药时需进行治疗药物监测(TDM)。目前,我国仅有四成医院具备TDM条件[5],由于监测结果滞后且费用昂贵,传统TDM在临床应用中存在一定的局限性。
机器学习(ML)是指利用数据集构建数学模型并不断训练优化,来实现对未知数据的预测或分类[6]。作为人工智能技术的一大重要分支,近年来,越来越多的研究将ML预测模型应用于TDM和个体化用药中。相较于传统TDM,基于ML的TDM模型不仅精确度高,还具有高效率、低成本和普及率高等优点,在个体化用药领域备受瞩目。目前,使用ML算法预测TAC个体化用药的研究主要集中于器官移植和NS两方面[7–9],但其在NS中的研究尚未见综述报道。基于此,该研究对ML算法在NS患者TAC个体化用药中的应用进行综述,以期为后续研究提供参考。
-
构建性能良好的ML预测模型需要研究样本、预测变量、模型算法、性能评价及模型验证等多因素共同作用。各预测模型的数据特征见表1。
表 1 应用ML预测TAC临床应用的数据特征
文献研究 研究目的 样本选择 预测变量 最佳预测变量 模型 模型性能 验证方法 Zheng等[16]
(2021)预测自身免疫性疾病患者TAC的血药浓度 自身免疫性疾病患者
(123人)52个,包括人口学特征、药物信息、实验室检查及联合用药 身高、TAC日剂量、其他免疫抑制剂、LDL、MCV、MCH、WBC、DBIL、HCT 5种线性模型、
9种ML模型XG Boost模型效果最佳,R2 0.54,MAE 0.25,MSE 0.11,ACC 74.4% 内部验证:随机分配,训练组、测试组比例8∶2;
外部验证:未进行Mo等[19]
(2021)预测NS患儿TAC肾毒性的发生风险 16岁以下难治性NS患儿
(229人)291个,包括疾病诊断、病理检查、药物信息及基因分型 SD11B1 (rs846910)、MAP2K6 (rs17823202)、SCARB2 (rs6823680)、TRPC6 (rs3824934) XG Boost、GBDT、ET、RF、LR XG Boost模型预测效果最佳,SE 0.750,
ACC 77.3%,SP 0.778,AUC 0.789内部验证:随机分配,训练组、测试组比例7∶3,5倍交叉验证;外部验证:11例其他中心NS患儿 Shao等[20]
(2022)预测NS患者TAC诱导震颤的发生风险 NS患者,TAC治疗>3个月
(252人)64个,包括人口学特征及实验室
检查肌酐、D-二聚体、总蛋白、钙离子、血小板分布宽度、钾离子、纤维蛋
白原RFE-NN RFE-NN模型性能良好,训练集:AUC 0.973,ACC 93.4%,SE 0.971,SP 0.759;外部验证集:ACC 82.1%,SE 0.838,SP 0.700 内部验证:随机分配,训练组、测试组比例7∶3,10倍交叉验证;外部验证:71例NS患者 Huang等[17]
(2022)结合群体药动学模型预测NS患儿TAC清除率 18岁以下难治性NS患者
(139人)43个,包括人口学特征、实验室检查、药动学数据及基因分型 年龄、合用五酯胶囊、CYP3A5 *3 (rs776746)、CTLA4 (rs4553808) XG Boost、RF、Xtra-Trees、GBDT、Ada Boost、Lasso Lasso模型性能最优,R2 0.42,MAE 1.51、MSE 3.98 内部验证:随机分配,训练组、测试组比例8∶2,5倍交叉验证,1000 次自举验证;外部验证:未进行 Yuan等[22]
(2022)预测NS患者TAC的血药浓度 NS患者
(913人)19个,包括人口学特征、实验室检测、医嘱信息 肌酐、体质量、年龄、身高、TAC剂量、合用匹多莫德、合用百灵、合用黄奎 XG Boost、LR、RF、Ada Boost、GBDT、LGBM XG Boost模型性能最佳,ACC 73.3%, AUC 0.553,召回率0.969,精确度0.739 内部验证:随机分配,训练组、测试组比例8∶2;
外部验证:115例患者和180次血液检测Mo等[18]
(2022)预测难治性NS患儿的TAC谷浓度 16岁以下难治性NS患儿
(171人)326个,包括用药资料、人口学特征、基因分型、实验室检查 年龄、性别、ALB、ACTN4 (rs3745859)等10个单核苷酸多态性 ET、GBDT、RF、XG Boost、Lasso GBDT算法在全组及CYP3A5非表达组表现最佳,R2 0.44,MSE 591.03,MAE 20.78;ET算法在CYP3A5表达组表现最佳,R2 0.38,MSE 1839.45,MAE 31.26 内部验证:随机分配,训练组、测试组比例8∶2,5倍交叉验证;外部验证:30例NS患儿 Mo等[21]
(2023)预测难治性NS患儿的TAC疗效 16岁以下难治性NS患儿
(238人)289个,包括人口学特征、实验室检测、药物信息、临床表现、单核苷酸多态性 尿液红细胞数、类固醇类型、ITGB4 (rs2290460)等8个单核苷酸多态性 LR、ET、GBDT、RF、XG Boost RF模型在两种疗效评价标准下均性能最佳,召回率 0.357~0.914,ACC 72.1%~75.4%,SP 0.500~0.980,AUC 0.803~0.807 内部验证:随机分配,训练组、测试组比例7∶3,5倍交叉验证;外部验证:35例NS患儿 注:LDL:低密度脂蛋白;MCV:平均红细胞体积;MCH:平均红细胞血红蛋白量;WBC:白细胞计数;DBIL:直接胆红素;HCT:红细胞压积;ALB:血清白蛋白;XG Boost:极端梯度提升;GBDT:梯度提升决策树;ET:极端随机树;RF:随机森林;LR:逻辑回归;RFE:递归特征消除;NN:神经网络;Ada Boost:自适应提升;LGBM:梯度提升决策树;ET:极随机树;R2:确定系数;MAE:平均绝对误差;MSE:均方误差;AUC:ROC曲线下的面积;ACC:准确度;SE:灵敏度;SP:特异性。 -
样本选择方面,研究人群主要为16岁以下儿童,样本数多在250例以下,给药周期为15 d~3个月[16,18,20]。变量选择方面,各研究选取的预测变量和变量数目差别较大,但变量类别主要集中于人口学特征、给药信息及实验室检查3类。肌酐水平、年龄、身高、TAC日剂量、CTLA4(rs4553808)基因型和TRPC6(rs3824934)基因型是多数研究者认可的最佳预测变量。
-
算法选择方面,XG Boost、GBDT、RF、LR及Lasso回归是最常见的5种ML算法。多项研究[16,19,22]表明,XG Boost算法拟合的模型在TAC个体化用药预测中性能最佳。此外,85%以上的研究涉及集成学习算法。
-
性能评价方面,ML模型的评价指标主要分为区分度和校准度两个层面。区分度可以反映模型对结局事件的预测准确度,校准度能体现模型预测结果与实际观测值之间的吻合程度。其中,ACC、AUC是区分度使用频率最高的指标[16,19-22];R2、MAE、MSE在校准度使用频率最高[16-18]。当前研究中,大部分预测模型的区分度较高(AUC:0.553~0.973,ACC:0.721~0.821),校准度良好(R2:0.420~0.540)[16,19-22]。
模型验证是检验ML模型普适性的重要步骤,包括内部验证和外部验证。研究常用的内部验证方法为拆分样本和交叉验证,70%以上的研究包含外部验证,但涉及多中心的研究较少[19]。
Application of machine learning in individualized medication of tacrolimus in patients with nephrotic syndrome
-
摘要: 他克莫司是治疗肾病综合征的常用药物,因其治疗窗窄、药动学个体差异大,临床用药时需进行治疗药物监测。在治疗药物监测过程中,基于机器学习的他克莫司个体化用药预测模型可从大量临床数据中挖掘用药规律,辅助临床决策,实现个体化精准用药。本文围绕机器学习模型概述、机器学习在肾病综合征患者他克莫司个体化用药中的应用进展、机器学习预测模型的建模要点及当前预测模型的局限性等方面进行综述,以期为后续研究提供参考。Abstract: Tacrolimus is a commonly used medication for the treatment of nephrotic syndrome. Due to its narrow therapeutic window and significant pharmacokinetic differences among individuals, therapeutic drug monitoring is required during its clinical use. In the process of therapeutic drug monitoring, machine learning-based personalized dosing prediction models for tacrolimus can excavate medication patterns from a large amount of clinical data, assist in clinical decision-making, and achieve individualized precise medication. Machine learning models, the application progress of machine learning in personalized administration of tacrolimus for patients with nephrotic syndrome, modeling points of machine learning prediction models, and the limitations of current prediction models were reviewed in this paper, which could provide references for future research in this field.
-
Key words:
- tacrolimus /
- nephrotic syndrome /
- machine learning
-
表 1 应用ML预测TAC临床应用的数据特征
文献研究 研究目的 样本选择 预测变量 最佳预测变量 模型 模型性能 验证方法 Zheng等[16]
(2021)预测自身免疫性疾病患者TAC的血药浓度 自身免疫性疾病患者
(123人)52个,包括人口学特征、药物信息、实验室检查及联合用药 身高、TAC日剂量、其他免疫抑制剂、LDL、MCV、MCH、WBC、DBIL、HCT 5种线性模型、
9种ML模型XG Boost模型效果最佳,R2 0.54,MAE 0.25,MSE 0.11,ACC 74.4% 内部验证:随机分配,训练组、测试组比例8∶2;
外部验证:未进行Mo等[19]
(2021)预测NS患儿TAC肾毒性的发生风险 16岁以下难治性NS患儿
(229人)291个,包括疾病诊断、病理检查、药物信息及基因分型 SD11B1 (rs846910)、MAP2K6 (rs17823202)、SCARB2 (rs6823680)、TRPC6 (rs3824934) XG Boost、GBDT、ET、RF、LR XG Boost模型预测效果最佳,SE 0.750,
ACC 77.3%,SP 0.778,AUC 0.789内部验证:随机分配,训练组、测试组比例7∶3,5倍交叉验证;外部验证:11例其他中心NS患儿 Shao等[20]
(2022)预测NS患者TAC诱导震颤的发生风险 NS患者,TAC治疗>3个月
(252人)64个,包括人口学特征及实验室
检查肌酐、D-二聚体、总蛋白、钙离子、血小板分布宽度、钾离子、纤维蛋
白原RFE-NN RFE-NN模型性能良好,训练集:AUC 0.973,ACC 93.4%,SE 0.971,SP 0.759;外部验证集:ACC 82.1%,SE 0.838,SP 0.700 内部验证:随机分配,训练组、测试组比例7∶3,10倍交叉验证;外部验证:71例NS患者 Huang等[17]
(2022)结合群体药动学模型预测NS患儿TAC清除率 18岁以下难治性NS患者
(139人)43个,包括人口学特征、实验室检查、药动学数据及基因分型 年龄、合用五酯胶囊、CYP3A5 *3 (rs776746)、CTLA4 (rs4553808) XG Boost、RF、Xtra-Trees、GBDT、Ada Boost、Lasso Lasso模型性能最优,R2 0.42,MAE 1.51、MSE 3.98 内部验证:随机分配,训练组、测试组比例8∶2,5倍交叉验证,1000 次自举验证;外部验证:未进行 Yuan等[22]
(2022)预测NS患者TAC的血药浓度 NS患者
(913人)19个,包括人口学特征、实验室检测、医嘱信息 肌酐、体质量、年龄、身高、TAC剂量、合用匹多莫德、合用百灵、合用黄奎 XG Boost、LR、RF、Ada Boost、GBDT、LGBM XG Boost模型性能最佳,ACC 73.3%, AUC 0.553,召回率0.969,精确度0.739 内部验证:随机分配,训练组、测试组比例8∶2;
外部验证:115例患者和180次血液检测Mo等[18]
(2022)预测难治性NS患儿的TAC谷浓度 16岁以下难治性NS患儿
(171人)326个,包括用药资料、人口学特征、基因分型、实验室检查 年龄、性别、ALB、ACTN4 (rs3745859)等10个单核苷酸多态性 ET、GBDT、RF、XG Boost、Lasso GBDT算法在全组及CYP3A5非表达组表现最佳,R2 0.44,MSE 591.03,MAE 20.78;ET算法在CYP3A5表达组表现最佳,R2 0.38,MSE 1839.45,MAE 31.26 内部验证:随机分配,训练组、测试组比例8∶2,5倍交叉验证;外部验证:30例NS患儿 Mo等[21]
(2023)预测难治性NS患儿的TAC疗效 16岁以下难治性NS患儿
(238人)289个,包括人口学特征、实验室检测、药物信息、临床表现、单核苷酸多态性 尿液红细胞数、类固醇类型、ITGB4 (rs2290460)等8个单核苷酸多态性 LR、ET、GBDT、RF、XG Boost RF模型在两种疗效评价标准下均性能最佳,召回率 0.357~0.914,ACC 72.1%~75.4%,SP 0.500~0.980,AUC 0.803~0.807 内部验证:随机分配,训练组、测试组比例7∶3,5倍交叉验证;外部验证:35例NS患儿 注:LDL:低密度脂蛋白;MCV:平均红细胞体积;MCH:平均红细胞血红蛋白量;WBC:白细胞计数;DBIL:直接胆红素;HCT:红细胞压积;ALB:血清白蛋白;XG Boost:极端梯度提升;GBDT:梯度提升决策树;ET:极端随机树;RF:随机森林;LR:逻辑回归;RFE:递归特征消除;NN:神经网络;Ada Boost:自适应提升;LGBM:梯度提升决策树;ET:极随机树;R2:确定系数;MAE:平均绝对误差;MSE:均方误差;AUC:ROC曲线下的面积;ACC:准确度;SE:灵敏度;SP:特异性。 -
[1] ORTH S R, RITZ E. The nephrotic syndrome[J]. N Engl J Med, 1998, 338(17):1202-1211. doi: 10.1056/NEJM199804233381707 [2] ROVIN B H, ADLER S G, BARRATT J, et al. Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases[J]. Kidney Int, 2021, 100(4):753-779. doi: 10.1016/j.kint.2021.05.015 [3] 张春燕, 任晓蕾, 张晓红. 五酯胶囊对肾病综合征患者他克莫司血药浓度及临床疗效影响的文献分析[J]. 中国新药杂志, 2023, 32(11):1128-1131. doi: 10.3969/j.issn.1003-3734.2023.11.008 [4] LI J L, LIU S, FU Q, et al. Interactive effects of CYP3A4, CYP3A5, MDR1 and NR1I2 polymorphisms on tracrolimus trough concentrations in early postrenal transplant recipients[J]. Pharmacogenomics, 2015, 16(12):1355-1365. doi: 10.2217/pgs.15.78 [5] 李沭, 张倩, 张爽, 等. 2018年中国医院治疗药物监测开展状况调查[J]. 中国药学杂志, 2019, 54(24):2087-2092. doi: 10.11669/cpj.2019.24.015 [6] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521:436-444. doi: 10.1038/nature14539 [7] 陆晓玲, 陈冰. 机器学习在移植患者他克莫司个体化精准用药中的应用概述[J]. 药物流行病学杂志, 2023, 32(1):82-88. [8] 宋学武, 高慧儿, 张弋. 基于人工智能的机器学习算法在个体化用药领域的应用进展[J]. 中国新药与临床杂志, 2021, 40(10):683-688. [9] BURLACU A, IFTENE A, JUGRIN D, et al. Using artificial intelligence resources in dialysis and kidney transplant patients: a literature review[J]. Biomed Res Int, 2020, 2020:9867872. [10] CHEN H Y, CHEN T C, MIN D I, et al. Prediction of tacrolimus blood levels by using the neural network with genetic algorithm in liver transplantation patients[J]. Ther Drug Monit, 1999, 21(1):50-56. doi: 10.1097/00007691-199902000-00008 [11] BORDIN N, DALLAGO C, HEINZINGER M, et al. Novel machine learning approaches revolutionize protein knowledge[J]. Trends Biochem Sci, 2023, 48(4):345-359. doi: 10.1016/j.tibs.2022.11.001 [12] 袁天蔚, 薛淮, 杨靖, 等. 从战略规划与科技布局看国内外人工智能医学应用的发展现状[J]. 生命科学, 2022, 34(8):974-982. [13] Sarker I H. Machine Learning: Algorithms, Real-World Applications and Research Directions[J]. SN Computer Science, 2021, 2(3):160. doi: 10.1007/s42979-021-00592-x [14] Ganaie M A, Hu M, Malik A K, et al. Ensemble deep learning: A review[J]. Engineering Applications of Artificial Intelligence, Oxford: Pergamon-Elsevier Science Ltd, 2022, 115: 105151. [15] 张颖, 于泽, 许本善, 等. 人工智能指导个体化用药的研究与实践[J]. 中国临床药学杂志, 2022, 31(2):151-156. [16] ZHENG P, YU Z, LI L R, et al. Predicting blood concentration of tacrolimus in patients with autoimmune diseases using machine learning techniques based on real-world evidence[J]. Front Pharmacol, 2021, 12:727245. doi: 10.3389/fphar.2021.727245 [17] HUANG Q B, LIN X B, WANG Y, et al. Tacrolimus pharmacokinetics in pediatric nephrotic syndrome: a combination of population pharmacokinetic modelling and machine learning approaches to improve individual prediction[J]. Front Pharmacol, 2022, 13:942129. doi: 10.3389/fphar.2022.942129 [18] MO X L, CHEN X J, WANG X G, et al. Prediction of tacrolimus dose/weight-adjusted trough concentration in pediatric refractory nephrotic syndrome: a machine learning approach[J]. Pharmgenomics Pers Med, 2022, 15:143-155. [19] MO X L, CHEN X J, IEONG C, et al. Early prediction of tacrolimus-induced tubular toxicity in pediatric refractory nephrotic syndrome using machine learning[J]. Front Pharmacol, 2021, 12:638724. doi: 10.3389/fphar.2021.638724 [20] SHAO B, QU Y Y, ZHANG W, et al. Machine learning-based prediction method for tremors induced by tacrolimus in the treatment of nephrotic syndrome[J]. Front Pharmacol, 2022, 13:708610. doi: 10.3389/fphar.2022.708610 [21] MO X L, CHEN X J, ZENG H S, et al. Tacrolimus in the treatment of childhood nephrotic syndrome: machine learning detects novel biomarkers and predicts efficacy[J]. Pharmacotherapy, 2023, 43(1):43-52. doi: 10.1002/phar.2749 [22] YUAN W J, SUI L, XIN H L, et al. Discussion on machine learning technology to predict tacrolimus blood concentration in patients with nephrotic syndrome and membranous nephropathy in real-world settings[J]. BMC Med Inform Decis Mak, 2022, 22(1):336. doi: 10.1186/s12911-022-02089-w [23] 周虎子威, 张云静, 于玥琳, 等. 机器学习方法在预测麻精药品不合理使用风险中的应用现状和思考[J]. 药物流行病学杂志, 2023, 32(4):446-457.