-
西红花,为鸢尾科多年生植物番红花(Crocus sativus L.)的干燥柱头,具有活血化瘀、凉血解毒、解郁安神等功效 [1]。番红花是三倍体不育植物,只能通过被称为球茎的块状球茎无性繁殖。西红花的产量和品质与球茎大小直接相关 [2]。而球茎中包含的有机酸、脂肪酸、萜类等化合物 [3]与球茎生长代谢过程密切相关,并在很大程度上影响球茎的大小。然而,目前球茎中内源性代谢物的分析方法均需要将样本进行匀浆后检测,这就会造成空间信息的丢失,无法实现原位分析。因此,利用新的技术手段研究番红花球茎中内源性代谢物的空间分布规律至关重要。
解吸电喷雾电离质谱成像(DESI-MSI)无需复杂的预处理步骤,可直接对样品进行可视化分析 [4]。目前已在解析植物内源性代谢物的空间定位方面显示出强大的分析能力。本研究通过优化切片厚度,建立了一种灵敏、高覆盖的质谱成像分析方法,以可视化番红花球茎中内源性代谢物在不同产地及同一产地不同部位的空间分布,实现了番红花球茎中黄酮、有机酸、氨基酸、类胡萝卜素和环烯醚萜苷的原位表征。为探究番红花全生命周期内的生长过程和开展番红花球茎种质筛选提供了新的技术支持。
Analysis of tissue distribution of metabolites in Crocus sativus L. corms based on DESI mass spectrometry imaging technique
-
摘要:
目的 探究不同产地番红花球茎中内源性代谢物的分布特征。 方法 利用解吸电喷雾(DESI)质谱成像技术,通过优化样品前处理,建立了一种对番红花球茎内源性代谢物可视化分析的方法。 结果 实现了黄酮、有机酸、氨基酸、类胡萝卜素和环烯醚萜苷等代谢物的原位表征;L-瓜氨酸、苯乙酰甘氨酸、紫苜蓿酚和栀子苷等特异性分布在球茎中;芹菜素7-(6''-O-乙酰基)-葡萄糖苷、异鼠李素-3-O-葡萄糖苷、蜀黍氰苷6'-葡萄糖苷、芹菜素7-O-二葡糖醛酸主要分布在顶芽中;对于在球茎部位分布的化合物,产于上海的番红花球茎丰度最高,浙江次之,安徽最低。 结论 番红花球茎在不同产地及同一产地不同部位的代谢物分布存在显著差异,黄酮和黄酮衍生物如异鼠李素-3-O-葡萄糖苷、芹菜素衍生物主要分布于顶芽中,此外,天然植物保护剂蜀黍氰苷6'-葡萄糖苷也主要在顶芽分布,而作为能量和物质供应的氨基酸则主要积累在球茎。 Abstract:Objective To explore the distribution characteristics of endogenous metabolites in Crocus sativus L. corms from different origins. Methods A method based on desorption electrospray ionization mass spectrometry imaging and optimized sample pretreatment was developed for directly visualize metabolites in C. sativus corms. Results In situ characterization of metabolites such as flavonoids, organic acids, amino acids, carotenoids, and cyclic enol ether terpene glycosides was achieved. L-Citruline, phenylacetylglycine, sativol, and geniposide were specifically distributed in the corms. Apigenin 7-(6''-O-acetyl)-glucoside, isorhamnetin-3-O-β-D-Glucoside, dhurrin 6'-glucoside, and Apigenin 7-O-diglucuronide were mainly distributed in the terminal bud. For compounds distributed in the corms, the highest abundance was found in corms from Shanghai, followed by Zhejiang and the lowest from Anhui. Conclusion The distribution of metabolites in different parts of C. sativus corms from different origins and the same origin varies significantly. Flavonoids and flavonoid derivatives such as isorhamnetin-3-O-β-D-Glucoside and apigenin derivatives are mainly distributed in the terminal buds, in addition, the natural plant protection agent dhurrin 6'-glucoside is also mainly distributed in the terminal corms, whereas amino acids, which are used as energy and material supplies, are mainly accumulated in the corms. -
[1] 国家药典委员会. 中华人民共和国药典(一部)2020年版[S]. 北京: 中国医药科技出版社, 2020. [2] AHRAZEM O, RUBIO-MORAGA A, NEBAUER S G, et al. Saffron: its phytochemistry, developmental processes, and biotechnological prospects[J]. J Agric Food Chem, 2015, 63(40):8751-8764. doi: 10.1021/acs.jafc.5b03194 [3] MOHTASHAMI L, AMIRI M S, RAMEZANI M, et al. The genus Crocus L.: a review of ethnobotanical uses, phytoche-mistry and pharmacology[J]. Ind Crops Prod, 2021, 171:113923. doi: 10.1016/j.indcrop.2021.113923 [4] WISEMAN J M, IFA D R, SONG Q Y, et al. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry[J]. Angew Chem Int Ed, 2006, 45(43):7188-7192. doi: 10.1002/anie.200602449 [5] WANG X F, ZHANG L, XIANG Y H, et al. Systematic study of tissue section thickness for MALDI MS profiling and imaging[J]. Analyst, 2023, 148(4):888-897. doi: 10.1039/D2AN01739C [6] DONG Y H, LI B, MALITSKY S, et al. Sample preparation for mass spectrometry imaging of plant tissues: a review[J]. Front Plant Sci, 2016, 7:60. [7] SUGIURA Y, SHIMMA S, SETOU M. Thin sectioning improves the peak intensity and signal-to-noise ratio in direct tissue mass spectrometry[J]. J Mass Spectrom Soc Jpn, 2006, 54(2):45-48. doi: 10.5702/massspec.54.45 [8] 张永珊. 藏红花球茎生物学特性及繁育增殖初步研究[D]. 南昌: 南昌大学, 2021. [9] YADAV M, SINGH I K, SINGH A. Dhurrin: a naturally occurring phytochemical as a weapon against insect herbivores[J]. Phytochemistry, 2023, 205:113483. doi: 10.1016/j.phytochem.2022.113483 [10] MONTINI L, CROCOLL C, GLEADOW R M, et al. Matrix-assisted laser desorption/ionization-mass spectrometry imaging of metabolites during Sorghum germination[J]. Plant Physiol, 2020, 183(3):925-942. doi: 10.1104/pp.19.01357 [11] WEN K M, FANG X C, YANG J L, et al. Recent research on flavonoids and their biomedical applications[J]. Curr Med Chem, 2021, 28(5):1042-1066. doi: 10.2174/0929867327666200713184138 [12] 王广苹, 韩翠婷, 葛珈铭, 等. 氮的吸收同化以及在药用植物组织培养中的应用[J]. 中药材, 2023(9):2353-2560. [13] 杨芙蓉, 冉家栋, 齐耀东, 等. 西红花全球生态适宜区预测及生态特征[J]. 中国现代中药, 2021, 23(9):1534-1541.