[1]
|
Sehgal SN, Baker H, Vézina C. Rapamycin(AY-22,989), a new antifungal antibiotic.II. Fer-mentation, isolation and characterization[J]. J Antibiot, 1975, 28(19): 721-732. |
[2]
|
马 林, 万元胜, 陈东生. 他克莫司的临床应用[J]. 药物流行病学杂志, 2008, 17(1): 8-10. |
[3]
|
Harding MW, Galat A, Uehling DE, et al. A receptor for the immuno-suppressant FK506 is a cistrans peptidyl-prolyl isomerase[J]. Nature, 1989, 341 (6244):758-760. |
[4]
|
Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast[J]. Scinece, 1991, 253(5022): 905-909. |
[5]
|
Snydman DR. Shifting patterns in the epidemiology of nosocomial Candida infections[J]. Chest, 2003, 123(5 Supp1): 5. |
[6]
|
周建党, 黄 辉, 陈 颖, 等. 四年间酵母样真菌感染的病原菌分布与耐药特征分析[J]. 中国微生态学杂志. 2007, 19 (2): 202-203. |
[7]
|
路晓钦, 黎莉华, 周 丽, 等. 白假丝酵母菌感染分布及耐药性分析[J]. 中国感染控制杂志,2007, 6 (6): 419-421. |
[8]
|
吴文娟,胡绿荫,孙志华, 等. 获得性免疫缺陷综合征患者白假丝酵母分离株基因型及耐药性分析[J]. 检验医学,2007, 22(6): 684-687. |
[9]
|
Dames SA, Mulet JM, Rathgeb-Szabo K, et al. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cel-lular stability[J]. J Biol Chem, 2005, 280(21): 20558-20564. |
[10]
|
Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism[J]. Cell, 2006, 124(3): 471-484. |
[11]
|
Rosenbach A, Dignard D, Pierce JV, et al. Adaptations of Candida albicans for growth in the mammalian Intestinal tract[J]. Eukaryot Cell, 2010, 9(7): 1075-1086. |
[12]
|
Uhl MA, Biery M, Craiget N, et al. Haploin sufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C.albicans[J]. EMBO, 2003, 22 (11): 2668-2678. |
[13]
|
Binda M, Péli-Gulli MP, Bonfils G, et al. The Vam6 GEF controls TORC1 by activating the EGO complex[J]. Mol Cell, 2009, 35(5): 563-573. |
[14]
|
Zakikhany K, Naglik JR, Schmidt-Westhausen A, et al. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination[J]. Cell Microbiol, 2007, 9(12): 2938-2954. |
[15]
|
Tsao CC, Chen YT, Lan CY. A small G protein Rhb1 and a GTP ase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans[J]. Fungal Genet Biol, 2009, 46(2): 126-136. |
[16]
|
Zacchi LF, Gomez-Raja J, Davis DA. Mds3 regulates morphogenesis in Candida albicans through the TOR pathway[J]. Mol Cell Biol, 2010, 30(14): 3695-3710. |
[17]
|
Lee CM, Nantel A, Jiang LH, et al. The serine/threonine protein phosphatase SIT4 modulates yeast-to-hypha morphogenesis and virulence in Candida albicans[J]. Mol Microbol, 2004, 51(3): 691-709. |
[18]
|
Liao WL, RamÓn AM, Fonzi WA. GLN3 encodes a global regulator of nitrogen metabolism and virulence of Candida albicans[J]. Fungal Genet Biol, 2008, 45(4): 514-526. |
[19]
|
Huber A, Bodenmiller B, Uotila A, et al. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis[J]. Genes Dev, 2009, 23: 1929-1943. |
[20]
|
Liu W, Zhao JW, Li XC, et al. The protein kinase CaSch9p is required for the cell growth, filamentation and virulence in the human fungal pathogen Candida albica[J]. FEMS Yeast Res, 2010, 10(4): 462-470. |
[21]
|
Li H, Tsang CK, Watkins M, et al. Nutrient regulates Tor1 nuclear localization and association with rDNA promoter[J]. Nature, 2006, 442: 1058-1061. |
[22]
|
Strugill TW, Cohen A, Diefenbacher M, et al. TOR1 and TOR2 have distinct locations in live cells[J]. Eukaryot Cell, 2008, 7(10): 1819-1830. |
[23]
|
Kim JE, Chen J. Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation[J]. PNAS, 2000, 97(26):14340-14345. |
[24]
|
Kojic EM, Darouiche RO. Candida infections of medical devices[J]. Clin Microbiol, 2004, 17(2): 255-267. |
[25]
|
Bastidas RJ, Heitman J, Cardenas ME. The protein kinase Tor1 regulates adhesin gene expression in Candida albicans[J]. PLoS Pathol, 2009, 5(2): e1000294. |
[26]
|
Tsuchimori N, Sharkey LL, Fonzi WA, et al. Reduced virulence of HWP1-deficient mutants of Candida albicans and their interactions with host cells[J]. Infect Immun, 2000, 68(4): 1997-2002. |
[27]
|
Nobile CJ, Mitchell AP. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p[J]. Curr Biol, 2005, 15(12): 1150-1155. |
[28]
|
Lempiäinen H, Uotila A, Urban J, et al. Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling[J]. Mol Cell, 2009, 33(6): 704-716. |
[29]
|
Rohde JR, Cardenas ME. Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi[J]. Curr Top Microbiol, 2004, 279: 53-72. |
[30]
|
Rohde JR, Bastidas R, Puria R, et al. Nutritional control via Tor sinaling in Saccharomyces cerevisiae[J]. Curr Opin Microbiol, 2008, 11(2): 153-160. |
[31]
|
Zurita-Martine SA, Cardenas ME. Tor and cyclic AMP-Protein kinase A:two parallel pathways regulating expression of genes required for cell growth[J]. Eukaryot Cell, 2005, 4(1): 63-71. |
[32]
|
Pedruzzi I, Dubouloz F, Cameroni E, et al. TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0 [J]. Mol Cell, 2003, 12(6): 1607-1613. |
[33]
|
Soulard A, Cohenl A, Hall MN. TOR signaling in invertebrates[J]. Curr Opin Cell Biol, 2009, 21(6): 825-836. |