-
体内药物分析是从药物分析学中衍生而来的一门分支学科。它通过分析生物体体液及各组织器官中药物及其代谢产物浓度,获取药物在生物体内数量和质量的变化、药物代谢方式及途径等信息,为药物研究和临床合理用药提供科学数据[1]。临床药学服务可以提高用药过程的有效性、安全性、经济性[2],在医疗机构的诊断和治疗工作中发挥着重要作用。随着临床上个体化治疗、精准治疗的需求增大,以及分析技术的不断发展,体内药物分析技术广泛地应用于临床药学工作中,成为促进临床合理用药的重要辅助技术之一。本文简要介绍体内药物分析技术在临床药学工作中的应用情况,为促进体内药物分析技术应用于临床工作提供参考。
Application progress on in vivo drug analysis technique in clinical pharmacy
-
摘要:
目的 探讨体内药物分析技术在临床药学工作中的应用进展。 方法 查阅相关文献,对临床样本的特点、临床常用的体内药物分析方法、体内药物分析在临床药学中的应用以及现存的问题进行综述。 结果和结论 近年来,随着临床个体化治疗、精准治疗的需求增大,以及分析技术的不断发展,体内药物分析技术广泛地应用于临床药学工作中,成为促进临床合理用药、提高个体化治疗水平、减少药品不良反应发生的重要辅助技术之一。但在实际应用中,还存在血液采样的侵入性阻碍采样、药物监测结果解释能力弱和临床检测方法等仍有待完善的问题。这些问题应当引起重视,并在后续的研究和应用中不断改善和解决。 Abstract:Objective To explore the progress on the application of in vivo drug analysis techniques in clinical pharmacy work. Methods Relevant literature was reviewed to provide an overview of the characteristics of clinical samples, common in vivo drug analysis methods used in the clinic, the application and existing problems of in vivo drug analysis in clinical pharmacy. Results and Conclusion In recent years, with the increasing demand for individualized and precise treatment in clinical practice and the continuous development of analytical techniques, in vivo drug analysis techniques have been widely used in clinical pharmacy work, which have become one of the important auxiliary techniques to promote rational clinical drug use, improve individualized treatment and reduce the occurrence of adverse reactions. However, in the actual application, there were still problems such as the invasive blood sampling that hinders sampling, the weak ability to interpret drug monitoring results and clinical testing methods that still need to be improved. These problems should be taken seriously and continuously improved and solved in the subsequent research and application. -
[1] 王秀季, 梅俊, 张立坚, 等. 临床药学专业体内药物分析教学模式探索[J]. 基础医学教育, 2019, 21(6):432-434. [2] AL RAIISI F, STEWART D, FERNANDEZ-LLIMOS F, et al. Clinical pharmacy practice in the care of Chronic Kidney Disease patients: a systematic review[J]. Int J Clin Pharm, 2019, 41(3):630-666. doi: 10.1007/s11096-019-00816-4 [3] 龚易昕悦, 唐铭擎, 谢静. 阿比朵尔体内药物分析方法研究进展[J]. 计量与测试技术, 2020, 47(9):43-48. [4] SEYFINEJAD B, JOUYBAN A. Overview of therapeutic drug monitoring of immunosuppressive drugs: analytical and clinical practices[J]. J Pharm Biomed Anal, 2021, 205:114315. doi: 10.1016/j.jpba.2021.114315 [5] 陆宇, 朱慧. 抗结核药治疗药物监测临床应用专家共识[J]. 中国防痨杂志, 2021, 43(9):867-873. [6] SEGER C, SHIPKOVA M, CHRISTIANS U, et al. Assuring the proper analytical performance of measurement procedures for immunosuppressive drug concentrations in clinical practice: recommendations of the international association of therapeutic drug monitoring and clinical toxicology immunosuppressive drug scientific committee[J]. Ther Drug Monit, 2016, 38(2):170-189. doi: 10.1097/FTD.0000000000000269 [7] KITCHEN S, ADCOCK D M, DAUER R, et al. International Council for Standardisation in Haematology (ICSH) recommendations for collection of blood samples for coagulation testing[J]. Int J Lab Hematol, 2021, 43(4):571-580. doi: 10.1111/ijlh.13584 [8] VAN DONGEN-LASES E C, CORNES M P, GRANKVIST K, et al. Patient identification and tube labelling - a call for harmonisation[J]. Clin Chem Lab Med, 2016, 54(7):1141-1145. doi: 10.1515/cclm-2015-1089 [9] 中国中西医结合学会检验医学专业委员会. 临床检验样本转运及保存规范化专家共识[J]. 中华检验医学杂志, 2023, 46(3):259-264. [10] 余史丹, 邬声远, 蓝丽爱, 等. 抗艾滋病药物体内分析方法及药代动力学研究进展[J]. 中南药学, 2018, 16(5):652-660. [11] TUZIMSKI T, PETRUCZYNIK A. Review of chromatographic methods coupled with modern detection techniques applied in the therapeutic drugs monitoring (TDM)[J]. Molecules, 2020, 25(17):4026. doi: 10.3390/molecules25174026 [12] YANAGIMACHI N, OBARA N, SAKATA-YANAGIMOTO M, et al. A simple HPLC assay for determining eltrombopag concentration in human serum[J]. Biomed Chromatogr, 2021, 35(5):e5049. doi: 10.1002/bmc.5049 [13] SEGER C, SALZMANN L. After another decade: LC-MS/MS became routine in clinical diagnostics[J]. Clin Biochem, 2020, 82:2-11. doi: 10.1016/j.clinbiochem.2020.03.004 [14] CHOI R, JEONG B H, KOH W J, et al. Recommendations for optimizing tuberculosis treatment: therapeutic drug monitoring, pharmacogenetics, and nutritional status considerations[J]. Ann Lab Med, 2017, 37(2):97-107. doi: 10.3343/alm.2017.37.2.97 [15] CHRISTIANS U, VINKS A A, LANGMAN L J, et al. Impact of laboratory practices on interlaboratory variability in therapeutic drug monitoring of immunosuppressive drugs[J]. Ther Drug Monit, 2015, 37(6):718-724. doi: 10.1097/FTD.0000000000000205 [16] DU P, WANG G Y, YANG S, et al. Quantitative HPLC-MS/MS determination of Nuc, the active metabolite of remdesivir, and its pharmacokinetics in rat[J]. Anal Bioanal Chem, 2021, 413(23):5811-5820. doi: 10.1007/s00216-021-03561-8 [17] 牟玲丽, 李三望, 周瑞, 等. 免疫分析方法在体内药物分析中的应用[J]. 中国药学(英文版), 2015, 24(4):205-216. [18] YANG H Y, HE Q Y, EREMIN S A, et al. Fluorescence polarization immunoassay for rapid determination of dehydroepiandrosterone in human urine[J]. Anal Bioanal Chem, 2021, 413(17):4459-4469. doi: 10.1007/s00216-021-03403-7 [19] FANG Z J, ZHANG H, GUO J C, et al. Overview of therapeutic drug monitoring and clinical practice[J]. Talanta, 2024, 266(Pt 1): 124996. [20] YANG Z M, QIN Y B, ZHAO D Y, et al. A simple and sensitive LC-MS/MS method for therapeutic drug monitoring of digoxin in children[J]. J Chromatogr B, 2023, 1221:123681. doi: 10.1016/j.jchromb.2023.123681 [21] CAMPUZANO S, YÁÑEZ-SEDEÑO P, PINGARRÓN J M. Revisiting electrochemical biosensing in the 21st century society for inflammatory cytokines involved in autoimmune, neurodegenerative, cardiac, viral and cancer diseases[J]. Sensors, 2020, 21(1):189. doi: 10.3390/s21010189 [22] ATES H C, ROBERTS J A, LIPMAN J, et al. On-site therapeutic drug monitoring[J]. Trends Biotechnol, 2020, 38(11):1262-1277. doi: 10.1016/j.tibtech.2020.03.001 [23] VERMA N, BHARDWAJ A. Biosensor technology for pesticides: a review[J]. Appl Biochem Biotechnol, 2015, 175(6):3093-3119. doi: 10.1007/s12010-015-1489-2 [24] RAWSON T M, SHARMA S, GEORGIOU P, et al. Towards a minimally invasive device for beta-lactam monitoring in humans[J]. Electrochem commun, 2017, 82:1-5. doi: 10.1016/j.elecom.2017.07.011 [25] RANAMUKHAARACHCHI S A, PADESTE C, DÜBNER M, et al. Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes[J]. Sci Rep, 2016, 6:29075. doi: 10.1038/srep29075 [26] STRAMBINI L M, LONGO A, SCARANO S, et al. Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid[J]. Biosens Bioelectron, 2015, 66:162-168. doi: 10.1016/j.bios.2014.11.010 [27] ZHAO S S, BUKAR N, TOULOUSE J L, et al. Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples[J]. Biosens Bioelectron, 2015, 64:664-670. doi: 10.1016/j.bios.2014.09.082 [28] BRUCH R, CHATELLE C, KLING A, et al. Clinical on-site monitoring of ß-lactam antibiotics for a personalized antibiotherapy[J]. Sci Rep, 2017, 7(1):3127. doi: 10.1038/s41598-017-03338-z [29] TENAGLIA E, FERRETTI A, DECOSTERD L A, et al. Comparison against current standards of a DNA aptamer for the label-free quantification of tobramycin in human sera employed for therapeutic drug monitoring[J]. J Pharm Biomed Anal, 2018, 159:341-347. doi: 10.1016/j.jpba.2018.06.061 [30] DAUPHIN-DUCHARME P, YANG K, ARROYO-CURRÁS N, et al. Electrochemical aptamer-based sensors for improved therapeutic drug monitoring and high-precision, feedback-controlled drug delivery[J]. ACS Sens, 2019, 4(10):2832-2837. doi: 10.1021/acssensors.9b01616 [31] BEEG M, NOBILI A, ORSINI B, et al. A Surface Plasmon Resonance-based assay to measure serum concentrations of therapeutic antibodies and anti-drug antibodies[J]. Sci Rep, 2019, 9(1):2064. doi: 10.1038/s41598-018-37950-4 [32] YUKSEL M, LUO W, MCCLOY B, et al. A precise and rapid early pregnancy test: development of a novel and fully automated electrochemical point-of-care biosensor for human urine samples[J]. Talanta, 2023, 254:124156. doi: 10.1016/j.talanta.2022.124156 [33] WU J, LIU H, CHEN W W, et al. Device integration of electrochemical biosensors[J]. Nat Rev Bioeng, 2023, 1(5):346-360. doi: 10.1038/s44222-023-00032-w [34] RODRÍGUEZ J, CASTAÑEDA G, MUÑOZ L, et al. Simultaneous determination of erlotinib and metabolites in human urine using capillary electrophoresis[J]. Electrophoresis, 2014, 35(10):1489-1495. doi: 10.1002/elps.201300573 [35] BACIU T, BORRULL F, AGUILAR C, et al. Findings in the hair of drug abusers using pressurized liquid extraction and solid-phase extraction coupled in-line with capillary electrophoresis[J]. J Pharm Biomed Anal, 2016, 131:420-428. doi: 10.1016/j.jpba.2016.09.017 [36] BACIU T, BORRULL F, NEUSÜß C, et al. Capillary electrophoresis combined in-line with solid-phase extraction using magnetic particles as new adsorbents for the determination of drugs of abuse in human urine[J]. Electrophoresis, 2016, 37(9):1232-1244. doi: 10.1002/elps.201500515 [37] 李巧艳, 刘明周, 孙俊, 等. 基于治疗药物监测的癫痫患者不规范用药现象分析和病例报道[J]. 中国合理用药探索, 2021, 18(9):39-43. [38] ROBERTS D M, GALLAPATTHY G, DUNUWILLE A, et al. Pharmacological treatment of cardiac glycoside poisoning[J]. Br J Clin Pharmacol, 2016, 81(3):488-495. doi: 10.1111/bcp.12814 [39] 陈文君, 周田彦, 卢炜. 群体药物动力学及其在新药研究中的应用[J]. 药学学报, 2017, 52(3):371-377. [40] 张相林, 缪丽燕, 陈文倩. 治疗药物监测工作规范专家共识(2019版)[J]. 中国医院用药评价与分析, 2019, 19(8):897-898,902. [41] 史群志, 吴戈, 刘芳群, 等. 基于治疗药物监测干预丙戊酸和利福平药物相互作用的案例分析[J]. 中南药学, 2021, 19(12):2685-2687. [42] HIEMKE C, BERGEMANN N, CLEMENT H W, et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017[J]. Pharmacopsychiatry, 2018, 51(1-2):9-62. [43] GIBSON D J, WARD M G, RENTSCH C, et al. Review article: determination of the therapeutic range for therapeutic drug monitoring of adalimumab and infliximab in patients with inflammatory bowel disease[J]. Aliment Pharmacol Ther, 2020, 51(6):612-628. doi: 10.1111/apt.15643 [44] ASHBEE H R, BARNES R A, JOHNSON E M, et al. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology[J]. J Antimicrob Chemother, 2014, 69(5):1162-1176. doi: 10.1093/jac/dkt508 [45] GASPAR V P, IBRAHIM S, ZAHEDI R P, et al. Utility, promise, and limitations of liquid chromatography-mass spectrometry-based therapeutic drug monitoring in precision medicine[J]. J Mass Spectrom, 2021, 56(11):e4788. doi: 10.1002/jms.4788 [46] MEDELLÍN-GARIBAY S E, CORREA-LÓPEZ T, ROMERO-MÉNDEZ C, et al. Limited sampling strategies to predict the area under the concentration-time curve for rifampicin[J]. Ther Drug Monit, 2014, 36(6):746-751. doi: 10.1097/FTD.0000000000000093 [47] MAGIS-ESCURRA C, LATER-NIJLAND H M J, ALFFENAAR J W C, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin[J]. Int J Antimicrob Agents, 2014, 44(3):229-234. doi: 10.1016/j.ijantimicag.2014.04.019 [48] DARWICH A S, POLASEK T M, ARONSON J K, et al. Model-informed precision dosing: background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy[J]. Annu Rev Pharmacol Toxicol, 2021, 61:225-245. doi: 10.1146/annurev-pharmtox-033020-113257 [49] KANTASIRIPITAK W, VAN DAELE R, GIJSEN M, et al. Software tools for model-informed precision dosing: how well do they satisfy the needs?[J]. Front Pharmacol, 2020, 11:620. doi: 10.3389/fphar.2020.00620 [50] 刘晓芹, 焦正, 高玉成, 等. 个体化给药辅助决策系统研究与应用进展[J]. 中国药学杂志, 2019, 54(1):1-8. [51] SANKOWSKI B, MICHOROWSKA S, RAĆKOWSKA E, et al. Saliva as blood alternative in therapeutic monitoring of teriflunomide-development and validation of the novel analytical method[J]. Int J Mol Sci, 2022, 23(17):9544. doi: 10.3390/ijms23179544 [52] HIEMKE C,BERGEMANN N,CLEMENT H W, 等. 神经精神药理学治疗药物监测共识指南: 2017版[J]. 实用药物与临床, 2022, 25(2): 97-118. [53] HOLFORD N, MA G D, METZ D. TDM is dead. Long live TCI![J]. Br J Clin Pharmacol, 2022, 88(4):1406-1413. doi: 10.1111/bcp.14434 [54] 李沭, 张倩, 张爽, 等. 2018年中国医院治疗药物监测开展状况调查[J]. 中国药学杂志, 2019, 54(24):2087-2092.
计量
- 文章访问数: 6076
- HTML全文浏览量: 2750
- PDF下载量: 64
- 被引次数: 0